An Efficient Path Planning and Control Algorithm for RUAV’s in Unknown and Cluttered Environments

Article

Abstract

This paper presents an efficient planning and execution algorithm for the navigation of an autonomous rotary wing UAV (RUAV) manoeuvering in an unknown and cluttered environment. A Rapidly-exploring Random Tree (RRT) variant is used for the generation of a collision free path and linear Model Predictive Control(MPC) is applied to follow this path. The guidance errors are mapped to the states of the linear MPC structure by using the nonlinear kinematic equations. The proposed path planning algorithm considers the run time of the planning stage explicitly and generates a continuous curvature path whenever replanning occurs. Simulation results show that the RUAV with the proposed methodology successfully achieves autonomous navigation regardless of its lack of prior information about the environment.

Keywords

Dynamic path planning Model predictive control Rapidly-exploring random trees Small-scale helicopter 

References

  1. 1.
    Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown environments. Auton. Robots 2(2), 127–145 (1995)CrossRefGoogle Scholar
  2. 2.
    Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: IEEE International Conference on Robotics and Automation, Detroit, Michigan (1999)Google Scholar
  3. 3.
    Ersson, T., Hu, X.: Path planning and navigation of mobile robots in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii (2001)Google Scholar
  4. 4.
    Bruce, J., Veloso, M.: Real-time randomized path planning for Robot navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002)Google Scholar
  5. 5.
    Philippsen, R., Kolski, S., Macek, K., Siegwart, R.: Path planning, replanning, and execution for autonomous driving in urban and offroad environments. In: Proceedings of the ICRA Workshop on Planning, Perception and Navigation for Intelligent Vehicles (2007)Google Scholar
  6. 6.
    Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., Beard, R.: Maximizing miniature aerial vehicles. IEEE Robot. Autom. Mag. 13, 34–43 (2006)CrossRefGoogle Scholar
  7. 7.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT, Cambridge (2005)MATHGoogle Scholar
  8. 8.
    Frazzoli, E., Dahleh, M., Feron, E.: Real-Time Motion Plannig for Agile Autonomous Vehicles. American Control Conference, Arlington, Virginia (2001)Google Scholar
  9. 9.
    Espinoza, J., Sánchez, A., Osorio, M.: Exploring unknown environments with randomized strategies. In: MICAI 2006: Advances in Artificial Intelligence (2006)Google Scholar
  10. 10.
    Walton, D.J., Meek, D.S., Ali, J.M.: Planar G2 transition curves composed of cubic Bezier spiral segments. J. Comput. Appl. Math. 157(2), 453–476 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wzorek, M., Doherty, P.: Reconfigurable path planning for an autonomous unmanned aerial vehicle. In: IEEE International Conference on Hybrid Information Technology (2006)Google Scholar
  12. 12.
    Sanders, C.P., DeBitetto, P.A., Feron, E., Vuong, H.F., Leveson, N.: Hierarchical control of small autonomus helicopters. In: IEEE Conference on Decision and Control, Tempa, Florida (1998)Google Scholar
  13. 13.
    Muratet, L., Doncieux, S., Briere, Y., Meyer, J.A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robot. Auton. Syst. 50, 195–209 (2005)CrossRefGoogle Scholar
  14. 14.
    Silvestre, C., Pascoal, A., Kaminer, I.: On the design of gain-scheduled trajectory tracking controllers. Int. J. Robust Nonlinear Control 12(9), 797–839 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kim, H., Shim, D., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: American Control Conference, Anchorage, AK (2002)Google Scholar
  16. 16.
    Grancharova, A., Johansen, T.A., Kocijan, J.: Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning. Comput. Chem. Eng. 28, 2481–2491 (2004)CrossRefGoogle Scholar
  17. 17.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. TR 98-11, Computer Science Dept, Iowa State University (1998)Google Scholar
  18. 18.
    Bartels, R.H., Beatty, J.C., Barsky, B.A.: An Introduction to Splines for use in Computer Graphics and Geometric Modeling. Morgan Ksufmann Publishers, Los Altos, California (1986)Google Scholar
  19. 19.
    Yang, K., Sukkarieh, S.: 3D smooth path planning for a UAV in cluttered natural environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 22–26 September 2008Google Scholar
  20. 20.
    Mettler, B., Tischler, M.B., Kanade, T.: System identification of small-size unmanned helicopter dynamics. In: American Helicopter Society 55th Forum, Montreal, Quebec (1999)Google Scholar
  21. 21.
    Shim, D.H., Kim, H.J., Sastry, S.: Hierarchical control system synthesis for rotorcraft-based unmanned aerial vehicles. In: AIAA Guidance, Navigation and Control Conference, Denver (2000)Google Scholar
  22. 22.
    Hwang, J., Arkin, R., Kwon, D.: Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In: IEE/RSJ Int. Conference on Intelligent Robots and Systems, Las Vegas, Nevada (2003)Google Scholar
  23. 23.
    Gravesen, J.: Adaptive subdivision and the length and energy of Bezier curves. Comput. Geom. 8(1), 13–31 (1997)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Shim, D., Chung, H., Sastry, S.: Conflict-free navigation in unknown urban environments. IEEE Robot. Autom. Mag. 13, 27–33 (2006)CrossRefGoogle Scholar
  25. 25.
    Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: methodology and experiments. Int. J. Rob. Res. 27(5), 549–574 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kwangjin Yang
    • 1
  • Seng Keat Gan
    • 1
  • Salah Sukkarieh
    • 1
  1. 1.Australian Centre for Field RoboticsUniversity of SydneySydneyAustralia

Personalised recommendations