Journal of Intelligent and Robotic Systems

, Volume 58, Issue 2, pp 125–147 | Cite as

Model Predictive Control of a Flexible Links Mechanism

  • Paolo Boscariol
  • Alessandro Gasparetto
  • Vanni Zanotto


Vibration suppression in flexible link manipulator is a recurring problem in most robotic applications. Solving this problem would allow to increase many times both the operative speed and the accuracy of manipulators. In this paper an innovative controller for flexible-links mechanism based on MPC (Model Predictive Control) with constraints is proposed. So far this kind of controller has been employed almost exclusively for controlling slow processes, like chemical plants, but the authors’ aim is to show that this approach can be successfully adapted to plants whose dynamical behavior is both nonlinear and fast changing. The effectiveness of this control system will be compared to the performance obtained with a classical industrial control. The reference mechanism chosen to evaluate the effectiveness of this control strategy is a four-link closed loop planar mechanism laying on the horizontal plane driven by a torque-controlled electric actuator.


Model predictive control MPC Four-link mechanism Vibration Constrained optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qin, S.J., Baggwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)CrossRefGoogle Scholar
  2. 2.
    Chen, X.-S., Li, Q., Fei, S.-M.: Constrained model predictive control in ball mill grinding process. Powder Technol. 186, 31–39 (2008)CrossRefGoogle Scholar
  3. 3.
    Perez, T., Goodwin, G.C., Tzeng, C.W.: Model predictive rudder roll stabilization control for ships. In: Proc. 5th IFAC Conf. on Manouvering and Control of Marine Craft, Aalborg, Denmark (2000)Google Scholar
  4. 4.
    Bleris, L.G., Vouzis, P.D., Arnold, M.G., Kothare, M.V.: A Co-Processor FPGA Platform for the Implementation of Real-Time Model Predictive Control American Control Conference 2006 (ACC’06), Minneapolis, Minnesota, 14–16 June 2006Google Scholar
  5. 5.
    Morari, M., Baotić, M., Borrelli, F.: Hybrid systems modeling and control. Eur. J. Control 9, 177–127 (2003)CrossRefGoogle Scholar
  6. 6.
    Murray, R.M., Hauser, J., Jadbabie, A., Milam, M.B., Petit, N., Dunbar, W.B., Franz, R.: Online control customization via aptimization-based control. In: Samad, T., Balas, G. (eds.) Software-Enabled Control. IEEE and Wiley, New York (2003)Google Scholar
  7. 7.
    Hassapis, G.: Implementation of model predictive control using real-time multiprocessing computer. Multiprocess. Microsyst. 27, 327–340 (2003)CrossRefGoogle Scholar
  8. 8.
    Ling, K.V., Yue, S.P., Maciejowski, J.: A FPGA implementation of model predictive control. In: Proceedings of American Control Conference, 14–16 June 2006Google Scholar
  9. 9.
    He, M., Chen, C., Zhang, X.: FPGA implementation of a recursive rank one updating matrix inversion algorithm for constrained MPC. Intell. Control Autom. 1, 733–737 (2006)Google Scholar
  10. 10.
    Hassan, M., Dubay, R., Li, C., Wang, R.: Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatron. 17, 311–323 (2007)CrossRefGoogle Scholar
  11. 11.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Vibration reduction in a single-link flexible mechanism trough the synthesis of an MPC controller. In: Proc. of IEEE Int. Conf. on Mechatronics, Malaga, Spain, 14–17 April 2009Google Scholar
  12. 12.
    Gasparetto, A.: Accurate modeling of a flexible-link planar mechanism by means of a linearized model in the state-space form for design of a vibration control. J. Sound Vibr. 240(2), 241–262 (2001)CrossRefGoogle Scholar
  13. 13.
    Giovagnoni, M.: A numerical and experimental analysis of a chain of flexible bodies. J. Dyn. Syst. Meas. Control 113, 73–80 (1994)CrossRefGoogle Scholar
  14. 14.
    Gasparetto, A., Zanotto, V.: Vibration reduction in a flexible-link mechanism through synthesis of an optimal controller. Meccanica 41, 611–622 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Gasparetto, A.: On the modeling of flexible-link planar mechanisms: experimental validation of an accurate dynamic model. J. Dyn. Syst. Meas. Control 126, 365–375 (2004)CrossRefGoogle Scholar
  16. 16.
    Trevisani, A.: Feedback control of flexible four-bar linkages: a numerical and experimental investigation. J. Sound Vibr. 268, 947–970 (2003)CrossRefGoogle Scholar
  17. 17.
    Caracciolo, R., Ceresole, E., Giovagnoni, M.: Control experiment of a flexible robot arm using the floating frame model. J. Robot. Mechatronics 8, 112–121 (1996)Google Scholar
  18. 18.
    Caracciolo, R., Trevisani, A.: Simultaneous rigid-body motion and vibration control of a flexible four-bar linkage. Mech. Mach. Theory 36(2), 221–243 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Caracciolo, R., Richiedei, D., Trevisani, A., Zanotto, V.: Robust mixed-norm position and vibration control of flexible link mechanisms. Mechatron. 15, 767–791 (2005)CrossRefGoogle Scholar
  20. 20.
    Franklin, F.G., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems, 2nd ed. Addison Wesley, Reading (1990)zbMATHGoogle Scholar
  21. 21.
    Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  22. 22.
    Ghahrmani, N.O., Towhidkhah, F.: Constrained incremental predictive controller design for a flexible joint robot. ISA Trans. 48, 321–326 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Paolo Boscariol
    • 1
  • Alessandro Gasparetto
    • 1
  • Vanni Zanotto
    • 1
  1. 1.DIEGM University of UdineUdineItaly

Personalised recommendations