Real-Time Model-Based Fault Detection and Isolation for UGVs

  • A. MonteriùEmail author
  • P. Asthana
  • K. P. Valavanis
  • S. Longhi


The paper presents a model-based sensor fault detection and isolation system applied in real-time to unmanned ground vehicles. Structural analysis is applied on the nonlinear model of the vehicle for building the residual generation module, followed by an ad-hoc residual evaluation module for detecting single and multiple sensor faults. The overall proposed diagnosis scheme has been tested in real-time on a real mobile robot in an outdoors environment and for different tasks. The obtained experimental results are satisfactory in terms of diagnosis performance and real-time implementation.


Fault detection Fault diagnosis Real–time systems 


  1. 1.
    Chow, E.Y., Willsky, A.S.: Issues in the development of a general design algorithm for reliable failure detection. In: Proc. 19th IEEE Conf. Decis. and Contr., pp. 1006–1012, Albuquerque, 10–12 December 1980Google Scholar
  2. 2.
    Staroswiecki, M., Declerck, P.: Analytical redundancy in non linear interconnected systems by means of structural analysis. In: IFAC Advanced Information Processing in Automatic Control (1989)Google Scholar
  3. 3.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, 2nd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. 4.
    Blanke, M., Niemann, H., Lorentzen, T.: Structural analysis—a case study of the Rømer satellite. In: Proc. of IFAC Safeprocess 2003, Washington, DC, 9–11 June 2003Google Scholar
  5. 5.
    Krysander, M.: Design and analysis of diagnostic systems utilizing structural methods. Department of Electrical Engineering, Linköpings Universitet (2003)Google Scholar
  6. 6.
    Pulido, B., Gonzalez, C.: Possible conflicts: a compilation technique for consistency-based diagnosis. IEEE Trans. Syst. Man Cybern. Part B 34(5), 2192–2206 (2004)CrossRefGoogle Scholar
  7. 7.
    Düstegör, D., Frisk, E., Cocquempot, V., Krysander, M., Staroswiecki, M.: Structural analysis of fault isolability in the damadics benchmark. Control Eng. Pract. 14(6), 597–608 (2006)CrossRefGoogle Scholar
  8. 8.
    Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)CrossRefGoogle Scholar
  9. 9.
    Long, M.: Creating a Distributed Field Robot Architecture for Multiple Robots. Master’s thesis, University of South Florida (2004)Google Scholar
  10. 10.
    Farrell, J.A., Barth, M.: The Global Positioning System & Inertial Navigation. McGraw-Hill, New York (1998)Google Scholar
  11. 11.
    Wang, C.M.: Localization estimation and uncertainty analysis for mobile robots. In: IEEE International Conference on Robotics and Automation, pp. 347–351, Philadelphia, April 1988Google Scholar
  12. 12.
    Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math. 10, 517–534 (1958)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  14. 14.
    Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000)CrossRefGoogle Scholar
  15. 15.
    Frank, P.: Residual evaluation for fault diagnosis based on adaptive fuzzy thresholds. In: IEE Colloquium on Qualitative and Quantitative Modelling Methods for Fault Diagnosis, p. 4, April 1995Google Scholar
  16. 16.
    Bask, M., Johansson, A.: Model-based supervision of valves in a flotation process. In: Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, vol. 1, pp. 744–749. IEEE, Piscataway (2003)Google Scholar
  17. 17.
    Johansson, A., Bask, M., Norlander, T.: Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty. Automatica 42(7), 1095–1106 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Zhang, X., Polycarpou, M., Parisini, T., Inc, I., Rockville, M.: A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans. Automat. Contr. 47(4), 576–593 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang, X., Parisini, T., Polycarpou, M.: Sensor bias fault isolation in a class of nonlinear systems. IEEE Trans. Automat. Contr. 50(3), 370–376 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Patton, R., Frank, P., Clarke, R.: Fault Diagnosis in Dynamic Systems: Theory and Application. Prentice-Hall, Upper Saddle River (1989)Google Scholar
  21. 21.
    XBOW: Crossbow homepage. (2008)
  22. 22.
    GARMIN: GARMIN manual. (2009)
  23. 23.
    Murphy, R.: Intro to AI Robotics. MIT, Cambridge (2000)Google Scholar
  24. 24.
    Long, M., Gage, A., Murphy, R., Valavanis, K.: Application of the distributed field robot architecture to a simulated demining task. In: IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 18–22 April 2005Google Scholar
  25. 25.
    Cordier, M., Dague, P., Dumas, M., Levy, F., Montmain, J., Staroswiecki, M., Travé-Massuyès, L.: A comparative analysis of ai and control theory approaches to model-based diagnosis. In: 14th European Conference on Artificial Intelligence, pp. 136–140, Berlin, 20–25 August 2000Google Scholar
  26. 26.
    Celse, B., Cauvin, S., Heim, B., Gentil, S., Travé-Massuyès, L.: Model based diagnostic module for a fcc pilot plant. Oil Gas Sci. Technol. 60(4), 661 (2005)CrossRefGoogle Scholar
  27. 27.
    Gustafsson, F.: The marginalized likelihood ratio test for detecting abrupt changes. IEEE Trans. Automat. Contr. 41, 66–78 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kadirkamanathan, V., Li, P., Jaward, M., Fabri, S.: Particle filtering-based fault detection in non-linear stochastic systems. Int. J. Syst. Sci. 33(4), 259–265 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Punskaya, E., Andrieu, C., Doucet, A., Fitzgerald, W.J.: Bayesian curve fitting with applications to signal segmentation. IEEE Trans. Signal Process. 50(3), 747–758 (2002)CrossRefGoogle Scholar
  30. 30.
    Tourneret, J.Y., Doisy, M., Lavielle, M.: Bayesian retrospective detection of multiple changepoints corrupted by multiplicative noise. Application to sar image edge detection. IEEE Trans. Signal Process. 83(9), 1871–1887 (2003)zbMATHGoogle Scholar
  31. 31.
    Kadirkamanathan, V., Li, P., Jaward, M., Fabri, S.: A sequential Monte Carlo filtering approach to fault detection andisolation in nonlinear systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, 2000, vol. 5. IEEE, Piscataway (2000)Google Scholar
  32. 32.
    Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis, pp. 1–6, Semmering, 2–4 May 2002Google Scholar
  33. 33.
    Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis [robot fault diagnosis]. IEEE Robot. Autom. Mag. 11(2), 56–66 (2004)CrossRefGoogle Scholar
  34. 34.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-gaussian Bayesian state estimation. In: Proc. Inst. Elect. Eng. F, vol. 140, pp. 107–113 (1993)Google Scholar
  35. 35.
    Kitagawa, G.: Monte-carlo filter and smoother for non-gaussian nonlinear state space models. J. Comput. Stat. Assoc. 5(1), 1–25 (1996)MathSciNetGoogle Scholar
  36. 36.
    Monteriu, A., Asthana, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i). In: 2007 IEEE International Conference on Robotics and Automation, pp. 2736–2743. IEEE, Piscataway (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Monteriù
    • 1
    Email author
  • P. Asthana
    • 2
  • K. P. Valavanis
    • 2
  • S. Longhi
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Gestionale e dell’AutomazioneUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Department of Computer Science and EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations