Journal of Intelligent and Robotic Systems

, Volume 56, Issue 1–2, pp 69–98

An Information Roadmap Method for Robotic Sensor Path Planning

Open Access
Article

Abstract

A new probabilistic roadmap method is presented for planning the path of a robotic sensor deployed in order to classify multiple fixed targets located in an obstacle-populated workspace. Existing roadmap methods have been successful at planning a robot path for the purpose of moving from an initial to a final configuration in a workspace by a minimum distance. But they are not directly applicable to robots whose primary objective is to gather target information with an on-board sensor. In this paper, a novel information roadmap method is developed in which obstacles, targets, sensor’s platform and field-of-view are represented as closed and bounded subsets of an Euclidean workspace. The information roadmap is sampled from a normalized information theoretic function that favors samples with a high expected value of information in configuration space. The method is applied to a landmine classification problem to plan the path of a robotic ground-penetrating radar, based on prior remote measurements and other geospatial data. Experiments show that paths obtained from the information roadmap exhibit a classification efficiency several times higher than that of existing search strategies. Also, the information roadmap can be used to deploy non-overpass capable robots that must avoid targets as well as obstacles.

Keywords

Information-driven sensor planning Path planning Robot sensing Sensor fusion Probabilistic roadmap methods Demining Information entropy 

References

  1. 1.
    Hofner, C., Schmidt, G.: Path planning and guidance techniques for an autonomous mobile cleaning robot. Robot. Auton. Syst. 14, 199–212 (1995)CrossRefGoogle Scholar
  2. 2.
    Acar, E.U.: Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods. Int. J. Rob. Res. 22, 441–466 (2003)CrossRefGoogle Scholar
  3. 3.
    Kreucher, C., Kastella, K., Hero, A.: Multi-platform information-based sensor management. Proc. SPIE 5820, 141–151 (2005)CrossRefGoogle Scholar
  4. 4.
    Rao, N., Hareti, S., Shi, W., Iyengar, S.: Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms. In: Technical Report ORNL/TM-12410. Oak Ridge National Laboratory, Oak Ridge, TN (1993)Google Scholar
  5. 5.
    Rao, N.: Robot navigation in unknown generalized polygonal terrains using vision sensors. IEEE Trans. Syst. Man Cybern. 25(6), 947–962 (1995)CrossRefGoogle Scholar
  6. 6.
    Lazanas, A., Latombe, J.C.: Motion planning with uncertainty—a landmark approach. Artif. Intell. 76, 287–317 (1995)CrossRefGoogle Scholar
  7. 7.
    Song, K., Chang, C.C.: Reactive navigation in dynamic environment using a multisensor predictor. IEEE Trans. Syst. Man Cybern., Part B 29(6), 870–880 (1999)CrossRefGoogle Scholar
  8. 8.
    Kazemi, M., Mehrandezh, M., Gupta, K.: Sensor-based robot path planning using harmonic function-based probabilistic roadmaps. In: Proc. ICAR ’05, 12th International Conference on Advanced Robotics (2005)Google Scholar
  9. 9.
    Sun, Z., Reif, J.: On robotic optimal path planning in polygonal regions with pseudo-eucledian metrics. IEEE Trans. Syst. Man Cybern., Part A 37(4), 925–936 (2007)CrossRefGoogle Scholar
  10. 10.
    Lai, X.-C., Ge, S.-S., Al-Mamun, A.: Hierarchical incremental path planning and situation-dependent optimized dynamic motion planning considering accelerations. IEEE Trans. Syst. Man Cybern., Part A 37(6), 1541–1554 (2007)CrossRefGoogle Scholar
  11. 11.
    Choset, H.: Coverage for robotics: a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)CrossRefGoogle Scholar
  12. 12.
    Siegel, R.: Land mine detection. IEEE Instrum. Meas. Mag. 5(4), 22–28 (2002)CrossRefGoogle Scholar
  13. 13.
    Ferrari, S., Cai, C., Fierro, R., Perteet, B.: A multi-objective optimization approach to detecting and tracking dynamic targets in pursuit-evasion games. In: Proc. of the 2007 American Control Conference, pp. 5316–5321. New York, NY (2007)Google Scholar
  14. 14.
    Culler, D., Estrin, D., Srivastava, M.: Overview of sensor networks. Computer 37(8), 41–49 (2004)CrossRefGoogle Scholar
  15. 15.
    Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In: Proc. 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-X) (2002)Google Scholar
  16. 16.
    Liao, X., Carin, L.: Application of the theory of optimal experiments to adaptive electromagnetic-induction sensing of buried targets. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 961–972 (2004)CrossRefGoogle Scholar
  17. 17.
    Spletzer, J.R., Taylor, C.J.: Dynamic sensor planning and control for optimally tracking target. Int. J. Robot. Res. 22(1), 7–20 (2003)CrossRefGoogle Scholar
  18. 18.
    Hager, G.D., Mintz, M.: Computational methods for task-directed sensor data fusion and sensor planning. Int. J. Robot. Res. 10, 285–313 (1991)CrossRefGoogle Scholar
  19. 19.
    Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. IEEE Trans. Syst. Man Cybern., Part B 34(1), 393–408 (2004)CrossRefGoogle Scholar
  20. 20.
    Chen, S.Y., Li, Y.F.: Vision sensor planning for 3cd model acquisition. IEEE Trans. Syst. Man Cybern., Part B 35(5), 894–904 (2005)MATHCrossRefGoogle Scholar
  21. 21.
    Gelenbe, E., Cao, Y.: Autonomous search for mines. Eur. J. Oper. Res. 108, 319–333 (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Qian, M., Ferrari, S.: Probabilistic deployment for multiple sensor systems. In: Proc. of the 12th SPIE Symposium on Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5765, pp. 85–96. San Diego (2005)Google Scholar
  23. 23.
    Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., Reif, J.H.: Narrow passage sampling for probabilistic roadmap planning. IEEE Trans. Robot. 21(6), 1105–1115 (2005)CrossRefGoogle Scholar
  24. 24.
    Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Trans. Robot. Autom. 16(4), 442–447 (2000)CrossRefGoogle Scholar
  25. 25.
    Boor, V., Overmars, M.H., der Stappen, A.F.: The gaussian sampling strategy for probabilistic roadmap planners. Proc. Conf. Robot. Autom. 2, 1018–1023 (1999)Google Scholar
  26. 26.
    Kavraki, L.E., Svetska, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans. Robot. Autom 12(4), 566–580 (1996)CrossRefGoogle Scholar
  27. 27.
    Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration. IEEE Signal Process. Mag. 19, 61–72 (2002)CrossRefGoogle Scholar
  28. 28.
    Schmaedeke, W.: Information based sensor management. In: Proc. SPIE Signal Processing, Sensor Fusion, and Target Recognition II (1993)Google Scholar
  29. 29.
    Kastella, K.: Discrimination gain to optimize detection and classification. IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans 27(1), 112–116 (1997)CrossRefGoogle Scholar
  30. 30.
    Kreucher, C., Kastella, K., Hero, III, A.O.: Sensor management using an active sensing approach. Signal Process. 85, 607–624 (2005)MATHCrossRefGoogle Scholar
  31. 31.
    Ji, S., Parr, R., Carin, L.: Nonmyopic multiaspect sensing with partially observable markov decision processes. IEEE Trans. Signal Process. 55(1), 2720–2730 (2007)CrossRefGoogle Scholar
  32. 32.
    Scrapper, C., Takeuchi, A.: Using a priori data for prediction and pbject recognition in an autonomous mobile vehicle. In: Proc. SPIE Unmanned Ground Vehicle Technology, vol. 5083 (2003)Google Scholar
  33. 33.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic, Boston (1991)Google Scholar
  34. 34.
    Berchtold, S., Glavina, B.: A Scalable Optimizer for Automatically Generated Manipulator Motions, pp. 1796–1802. München, Germany (1994)Google Scholar
  35. 35.
    Perrin, S., Duflos, E., Vanheeghe, P., Bibaut, A.: Multisensor fusion in the frame of evidence theory for landmines detection. IEEE Trans. Syst. Man Cybern., Part C 34(4), 485–498 (2004)CrossRefGoogle Scholar
  36. 36.
    Ferrari, S., Vaghi, A.: Demining sensor modeling and feature-level fusion by bayesian networks. IEEE Sensors 6, 471–483 (2006)CrossRefGoogle Scholar
  37. 37.
    Cai, C., Ferrari, S., Ming, Q.: Bayesian network modeling of acoustic sensor measurements. In: Proc. IEEE Sensors, pp. 345–348. Atlanta, GA (2007)Google Scholar
  38. 38.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)MATHGoogle Scholar
  39. 39.
    Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)MATHGoogle Scholar
  40. 40.
    Murphy, K.: How to use bayes net toolbox. [Online]. Available:http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html (2004)
  41. 41.
    Cai, C. Ferrari, S.: Comparison of information-theoretic objective functions for decision support in sensor systems. In: Proc. American Control Conference, pp. 63–133. New York, NY (2007)Google Scholar
  42. 42.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  43. 43.
    Stengel, R.F.: Optimal Control and Estimation. Dover (1994)Google Scholar
  44. 44.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  45. 45.
    Nilsson, N.J.: Principles of Artificial Intelligence. Morgan Kaufmann, Los Altos, CA (1980)MATHGoogle Scholar
  46. 46.
    Bellman, R.E., Dreyfus, S.E.: Applied Dynamic Programming. Princeton University Press, Princeton, NJ (1962)MATHGoogle Scholar
  47. 47.
    Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach. Prentice Hall, Upper Saddle River, NJ (2003)Google Scholar
  48. 48.
    Daniels, D.J.: A review of GPR for landmine detection. Sens. Imaging 7(3), 90–123 (2006)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Paik, J.: Image processing-based mine detection techniques using multiple sensors: a review. Subsurf. Sens. Technol. Appl. 3, 203–252 (2002)CrossRefGoogle Scholar
  50. 50.
    MacDonald, J.: Alternatives for Landmine Detection. Rand, Sta Monica (2003)Google Scholar
  51. 51.
    Dam, R.V., Borchers, B., Hendrickx, J., Hong, S.: Soil effects on thermal signatures of buried nonmetallic landmines. In: Detection and Remediation Technologies for Mines and Minelike Targets VIII. Proc. of the SPIE, vol. 5089, pp. 1210–1218 (2003)Google Scholar
  52. 52.
    Explosive, Ordnance, Disposal, (EOD), and Technicians: ORDATA [Online]. Available:http://maic.jmu.edu/ordata/mission.asp (2006)
  53. 53.
    Fierro, R., Lewis, F.: Control of nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)CrossRefGoogle Scholar
  54. 54.
    Cruz, D., McClintock, J., Perteet, B., Orqueda, O., Cao, Y., Fierro, R.: Decentralized cooperative control—a multivehicle platform for research in networked embedded systems. IEEE Control Syst. Mag. 27, 58–78 (2007)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Vaghi, A.: Sensor management by a graphical model approach. Politecnico di Milano, Laurea Thesis (2004)Google Scholar
  56. 56.
    Mathworks: Matlab [Online]. Available:http://www.mathworks.com (2004)
  57. 57.
    Arkin, E.-M., Fekete, S.-P., Mitchell, J.-S.-B.: Approximation algorithms for lawn mowing and milling. Comput. Geom. 17(1), 25–50 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  2. 2.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations