Unified Behavior Framework for Reactive Robot Control

Article

Abstract

Behavior-based systems form the basis of autonomous control for many robots. In this article, we demonstrate that a single software framework can be used to represent many existing behavior based approaches. The unified behavior framework presented, incorporates the critical ideas and concepts of the existing reactive controllers. Additionally, the modular design of the behavior framework: (1) simplifies development and testing; (2) promotes the reuse of code; (3) supports designs that scale easily into large hierarchies while restricting code complexity; and (4) allows the behavior based system developer the freedom to use the behavior system they feel will function the best. When a hybrid or three layer control architecture includes the unified behavior framework, a common interface is shared by all behaviors, leaving the higher order planning and sequencing elements free to interchange behaviors during execution to achieve high level goals and plans. The framework’s ability to compose structures from independent elements encourages experimentation and reuse while isolating the scope of troubleshooting to the behavior composition. The ability to use elemental components to build and evaluate behavior structures is demonstrated using the Robocode simulation environment. Additionally, the ability of a reactive controller to change its active behavior during execution is shown in a goal seeking robot implementation.

Keywords

Behavior-based robotics Reactive control architecture Software design patterns Software frameworks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.C.: Behavior-based robot navigation for extended domains. Adapt. Behav. 1, 201–225 (1992). doi:10.1177/105971239200100204 CrossRefGoogle Scholar
  2. 2.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge, MA (1998)Google Scholar
  3. 3.
    Atrash, A., Koenig, S.: Probabilistic planning for behavior-based robots. In: Proceedings of the 14th International FLAIRS Conference (FLAIRS), pp. 531–535 (2001)Google Scholar
  4. 4.
    Bischoff, R., Graefe, V.: Learning from nature to build intelligent autonomous robots. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3160–3165. Beijing, China (2006)Google Scholar
  5. 5.
    Blank, D.S., Kumar, D., Meeden, L., Yanco, H.: Pyro: a python-based versatile programming environment for teaching robotics. J. Educ. Resour. Comput. (JERIC) 3(4), 1–15 (2003). doi:10.1145/1047568.1047569 CrossRefGoogle Scholar
  6. 6.
    Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA (1984)Google Scholar
  7. 7.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. RA-2, 14–23 (1986)MathSciNetGoogle Scholar
  8. 8.
    Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6, 315 (1990). doi:10.1016/S0921-8890(05)80025-9 CrossRefGoogle Scholar
  9. 9.
    Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991). doi:10.1126/science.253.5025.1227 CrossRefGoogle Scholar
  10. 10.
    Carreras, M., Ridao, P., Batlle, J., Nicosevici, T.: Efficient learning of reactive robot behaviors with a neural-Q-learning approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1020–1025 (2002)Google Scholar
  11. 11.
    Caselli, S., Monica, F., Reggiani, M.: YARA: a software framework enhancing service robot dependability. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference, pp. 1970–1976 (2005)Google Scholar
  12. 12.
    Connell, J.: A behavior-based arm controller. IEEE Trans. Robot. Autom. 5, 784–791 (1989)CrossRefGoogle Scholar
  13. 13.
    Dong, M., Sun, Z.: A behavior-based architecture for unmanned aerial vehicles. In: Proceedings of the 2004 IEEE International Symposium on Intelligent Control, pp. 149–155. Taipei, Taiwan (2004)Google Scholar
  14. 14.
    Firby, R.J.: Task networks for controlling continuous processes. In: Proceedings of the Second International conference on AI Planning Systems. Chicago, IL (1994)Google Scholar
  15. 15.
    Gallagher, J.: An evolvable hardware layer for global and local learning of locomotion control in a hexapod robot. Int. J. Artif. Intell. Tools 14(6), 999–1017 (2005). doi:10.1142/S021821300500251X CrossRefGoogle Scholar
  16. 16.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Boston, MA (1994)Google Scholar
  17. 17.
    Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pp. 195–210. AAAI Press/MIT Press, Cambridge, MA (1998)Google Scholar
  18. 18.
    Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  19. 19.
    Gordon, E., Logan, B.: Managing goals and resources in dynamic environments. In: Davis, D.N., Hershey, P.A. (eds.) Visions of Mind: Architectures for Cognition and Affect, pp. 225–253. Information Science Publishing (2005)Google Scholar
  20. 20.
    Hoffmann, F.: Evolutionary algorithms for fuzzy control system design. Proc. IEEE 89(9), 1318–1333 (2001). doi:10.1109/5.949487 CrossRefGoogle Scholar
  21. 21.
    Huq, R., Mann, G.K.I., Gosine, R.G.: Behavior-based robot control using fuzzy discrete event system. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1146–1153. Vancouver, BC, Canada (2006)Google Scholar
  22. 22.
    Kaelbling, L.P.: An architecture for intelligent reactive systems. In: SRI International Technical Note No. 400. Menlo Park, CA (1986)Google Scholar
  23. 23.
    Konolige, K.: The Saphira architecture: a design for autonomy. J. Exp. Theor. Artif. Intell. 9, 215–235 (1997). doi:10.1080/095281397147095 CrossRefGoogle Scholar
  24. 24.
    LeCun, Y., Muller, W., Ben, J., Cosatto, E., Flepp, B.: Off-road obstacle avoidance through end-to-end learning. In: Advances in Neural Information Processing Systems (NIPS 2005). MIT Press (2005)Google Scholar
  25. 25.
    Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.-O., Powell, D.: Planning with diversified models for fault-tolerant robots. In: ICAPS 2007 The International Conference on Automated Planning & Scheduling, pp. 2–9. Providence, RI (2007)Google Scholar
  26. 26.
    Maes, P.: Situated agents can have goals. Robot. Auton. Syst. 6, 49–70 (1990)CrossRefGoogle Scholar
  27. 27.
    Magg, S., Philippides, A.: GasNets and CTRNNs—a comparison in terms of evolvability. From Anim. Animats 9, 461–472 (2006)CrossRefGoogle Scholar
  28. 28.
    Moravec, H.P.: Robot Rover Visual Navigation. UMI Research Press Ann Arbor, Mich (1981)Google Scholar
  29. 29.
    Nilsson, N.J.: Shakey the Robot. SRI International (1984)Google Scholar
  30. 30.
    O’Kelly, J., Gibson, J.P.: RoboCode & Problem-based learning: a non-prescriptive approach to teaching programming. In: Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, ITiCSE06, pp. 217–221. Bologna, Italy (2006)Google Scholar
  31. 31.
    Peterson, G.L., Cook, D.J.: Integrating decision theoretic planning in a robot architecture. Robot. Auton. Syst. 42(2), 89–106 (2003). doi:10.1016/S0921-8890(02)00326-3 MATHCrossRefGoogle Scholar
  32. 32.
    Rosenblatt, J.: DAMN: a distributed architecture for mobile navigation. In: Presented at the AAAI Spring Symposium on Lessons Learned for Implemented Software Architectures for Physical Agents. Palo Alto, CA, 1995.Google Scholar
  33. 33.
    Rosenblatt, J.: Utility fusion: map-based planning in a behavior-based system. In: Field and Service Robotics, pp. 411–418 (1998)Google Scholar
  34. 34.
    Rusu, P., Petriu, E.M., Whalen, T.E., Cornell, A., Spoelder, H.J.W.: ANN arrangement of fuzzy controls. IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003)CrossRefGoogle Scholar
  35. 35.
    Trujillo, L., Olague, G., Lutton, E., de Vega, F.F.: Discovering several robot behaviors through speciation. In: Applications of Evolutionary Computing, pp. 164–174. Springer, Berlin (2008)CrossRefGoogle Scholar
  36. 36.
    Utz, H., Kraetzschmar, G., Mayer, G., Palm, G.: Hierarchical behavior organization. In: 2005 International Conference on Intelligent Robots and Systems, pp. 2598–2605. IEEE/RSJ, Edmonton, Canada (2005)Google Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAir Force Institute of TechnologyWright-Patterson AFBUSA

Personalised recommendations