Dual FastSLAM: Dual Factorization of the Particle Filter Based Solution of the Simultaneous Localization and Mapping Problem

  • D. Rodriguez-Losada
  • P. San Segundo
  • F. Matia
  • L. Pedraza


The process of building a map with a mobile robot is known as the Simultaneous Localization and Mapping (SLAM) problem, and is considered essential for achieving true autonomy. The best existing solutions to the SLAM problem are based on probabilistic techniques, mainly derived from the basic Bayes Filter. A recent approach is the use of Rao-Blackwellized particle filters. The FastSLAM solution factorizes the Bayes SLAM posterior using a particle filter to estimate over the possible paths of the robot and several independent Kalman Filters attached to each particle to estimate the location of landmarks conditioned to the robot path. Although there are several successful implementations of this idea, there is a lack of applications to indoor environments where the most common feature is the line segment corresponding to straight walls. This paper presents a novel factorization, which is the dual of the existing FastSLAM one, that decouples the SLAM into a map estimation and a localization problem, using a particle filter to estimate over maps and a Kalman Filter attached to each particle to estimate the robot pose conditioned to the given map. We have implemented and tested this approach, analyzing and comparing our solution with the FastSLAM one, and successfully building feature based maps of indoor environments.


SLAM Particle filter Indoor environments Mobile robots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)Google Scholar
  2. 2.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence 2. Elsevier, New York (1988)Google Scholar
  3. 3.
    Liu, Y., Thrun, S.: Results for outdoor-SLAM using sparse extended information filters. IEEE Int. Conf. Robot. Autom. 1, 1227–1233 (2003)Google Scholar
  4. 4.
    Guivant, J., Nebot, E.: Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257 (2001). doi:10.1109/70.938382 CrossRefGoogle Scholar
  5. 5.
    Williams, S., Dissanayake, G., Durrant-Whyte, H.F.: An efficient approach to the simultaneous localization and mapping problem. IEEE Int. Conf. Robot. Autom. 15(5), 406–411 (2002)Google Scholar
  6. 6.
    Tardos, J.D., Neira, J., Newman, P., Leonard, J.J.: Robust mapping and localization in indoor environment using sonar data. Int. J. Rob. Res. 21(4), 311–330 (2002)CrossRefGoogle Scholar
  7. 7.
    Julier, S., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. IEEE ICRA’01. V.4. Seul, Corea., pp. 4238–4243 (2001)Google Scholar
  8. 8.
    Castellanos, J.A., Neira, J., Tardos, J.D.: Limits to the consistency of EKF-based SLAM. In: Fifth IFAC Symposium on Intelligent Autonomous Vehicles IAV’04. Lisbon, Portugal (2004)Google Scholar
  9. 9.
    Rodriguez-Losada, D., Matia, F., Pedraza, L., Jimenez, A., Galan, R.: Consistency of SLAM-EKF algorihtms for indoor environments. J. Intell. Robot. Syst. 50(4), 375–397 (2007). Springer. ISSN 0921-0296zbMATHCrossRefGoogle Scholar
  10. 10.
    Doucet, A., de Freitas, J.F.G., Murphy, K., Russel, S.: Raoblackwellized particle filtering for dynamic bayesian networks. Conf. on Uncertainty in Artifcial Intelligence (UAI) (2000)Google Scholar
  11. 11.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. AAAI Nat. Conf. on Artif. Intelligence. Edmonton, Canada (2002)Google Scholar
  12. 12.
    Eliazar, A., Parr, R.: DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks. In: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI) (2003)Google Scholar
  13. 13.
    Grisetti, G., Stachniss, C., Burgard, W.: Improving Grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling. IEEE ICRA’ 05, pp. 2443–2448, Barcelona, Spain (2005)Google Scholar
  14. 14.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI, pp. 1151–1156 (2003)Google Scholar
  15. 15.
    Hahnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. IEEE/RSJ IROS’03 (2003)Google Scholar
  16. 16.
    Elinas, P., Sim, R., Little, J.J.: σSLAM: Stereo Vision SLAM using the rao-blackwellised particle filter and a novel mixture proposal distribution. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1564–1570. Orlando, FL, (2006)Google Scholar
  17. 17.
    Bailey, T., Nieto, J., Nebot, E.: Consistency of the FastSLAM algorithm. In: IEEE International Conference on Robotics and Automation, 2006, pp. 424–429. Orlando, FL, USA, (2006)Google Scholar
  18. 18.
    Castellanos, J.A., Montiel, J.M., Neira, J., Tardos, J.D.: The SPmap: a probabilistic framework for simultaneous localization and map building. IEEE Trans. Robot. Autom. 15(5), 948–953 (1999)CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Losada, D., Matia, F., Galan, R.: Building geometric feature based maps for indoor service robots. Robot. Auton. Syst. 54, 546–558 (2006). doi:10.1016/j.robot.2006.04.003 CrossRefGoogle Scholar
  20. 20.
    Montemerlo, M.: FastSLAM: a factored solution to the simultaneous localization and mapping problem with unknown data association. PhD doctoral dissertation, CMU-RI-TR-03-28, Robotics Institute, Carnegie Mellon University, July (2003)Google Scholar
  21. 21.
    Neira, J., Tardos, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001). doi:10.1109/70.976019 CrossRefGoogle Scholar
  22. 22.
    Lacey, G., Rodriguez-Losada, D.: The evolution of Guido: a smart walker for the blind. Accepted IEEE Robot. Autom. Mag. 15(4), 75–83 (2008). doi:10.1109/MRA.2008.929924 CrossRefGoogle Scholar
  23. 23.
    Rodriguez-Losada, D., Matia, F., Jiménez, A., Galan, R., Lacey, G.: Implementing map based navigation in Guido, the robotic SmartWalker. In: IEEE International Conference on Robotics and Automation, pp. 3401–3406. Barcelona, Spain, (2005)Google Scholar
  24. 24.
    Bosse, M., Newman, P., Leonard, J., Teller, S.: Simultaneous localization and map building in large-scale cyclic environments using the atlas framework. Int. J. Robot. Res 23(12), 1113–1140 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Rodriguez-Losada
    • 1
  • P. San Segundo
    • 1
  • F. Matia
    • 1
  • L. Pedraza
    • 1
  1. 1.Universidad Politecnica de MadridMadridSpain

Personalised recommendations