Journal of Intelligent and Robotic Systems

, Volume 54, Issue 5, pp 709–731 | Cite as

Wheeled Mobile Robots Control in a Linear Platoon

  • Gregor KlančarEmail author
  • Drago Matko
  • Sašo Blažič


Future transportation systems will require a number of drastic measures, mostly to lower traffic jams and air pollution in urban areas. Automatically guided vehicles capable of driving in a platoon fashion will represent an important feature of such systems. Platooning of a group of automated wheeled mobile robots relying on relative sensor information only is addressed in this paper. Each vehicle in the platoon must precisely follow the path of the vehicle in front of it and maintain the desired safety distance to that same vehicle. Vehicles have only distance and azimuth information to the preceding vehicle where no inter-vehicle communication is available. Following vehicles determine their reference positions and orientations based on estimated paths of the vehicles in front of them. Vehicles in the platoon are then controlled to follow the estimated trajectories. Then presented platooning control strategies are experimentally validated by experiments on a group of small-sized mobile robots and on a Pioneer 3AT mobile robot. The results and robustness analysis show the proposed platooning approach applicability.


Mobile robots Platooning Path following control Reactive multiagent system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balluchi, A., Bicchi, A., Balestrino, A., Casalino, G.: Path Tracking Control for Dubin’s Cars. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 3123–3128. Minneapolis, Minnesota (1996)Google Scholar
  2. 2.
    Bom, J., Thuilot, B., Marmoiton, F., Martinet, P.: A Global Control Strategy for Urban Vehicles Platooning relying on Nonlinear Decoupling Laws. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, pp. 1995–2000 (2005)Google Scholar
  3. 3.
    Canudas de Wit, C., Sordalen, O.J.: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Contet, J-M., Gechter, F., Gruer, P., Koukam, A.: Application of reactive multiagent system to linear vehicle platoon. In: Annual IEEE International Conference on Tools with Artificial Intelligence(*ICTAI*). Patras, Grece (2007)Google Scholar
  5. 5.
    Cortés, J., Martnez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  6. 6.
    Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a pltoon. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 41–46. Tokyo, Japan (1996)Google Scholar
  7. 7.
    Fredslund, J., Matarić, M.: A general algorithm for robot formations using local sensing and minimal communications. IEEE Trans. Robot. Autom. 18(5), 837–846 (2002)CrossRefGoogle Scholar
  8. 8.
    Gehrig, S.K., Stein, F.J.: Elastic bands to enhance vehicle following. In: IEEE Intelligent Transportation Systems Conference Proceedings, ITSC, pp. 597–602. Oakland, CA (2001)Google Scholar
  9. 9.
    Halle, S., Chaib-draa, B.: A collaborative driving system based on multiagent modeling and simulations. J. Trans. Res. Part C (TRC-C): Emergent Technol. 13(4), 320–345 (2005)CrossRefGoogle Scholar
  10. 10.
    Hedrick, J., Tomizuka, M., Varaiya P.: Control issues in automated highway systems. IEEE Control Syst. Magazine 14(6), 21–32 (1994)CrossRefGoogle Scholar
  11. 11.
    Ioannou, P., Xu Z.: Throttle and brake control systems for automatic vehicle following. IVHS J. 1(4), 345–377 (1994)Google Scholar
  12. 12.
    Klančar, G., Kristan, M., Kovačič, S., Orqueda, O.: Robust and efficient vision system for group of cooperating mobile robots with application to soccer robots. ISA Trans. 43, 329–342 (2004)CrossRefGoogle Scholar
  13. 13.
    Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)CrossRefGoogle Scholar
  14. 14.
    Kolmanovsky, I., McClamroch, N.H.: Developments in Nonholonomic Control Problems. IEEE Control Syst. 15(6), 20–36 (1995)CrossRefGoogle Scholar
  15. 15.
    Laumond, J.P.: Robot motion planning and control. In: Lecture Notes in Control and Information Science, Vol. 229. Springer-Verlag, New York (1998)Google Scholar
  16. 16.
    Lee, H., Tomizuka, M.: Adaptive vehicle traction force control for intelligent vehicle highway systems (ivhss). IEEE Trans. Ind. Electron. 50(1), 37–47 (2003)CrossRefGoogle Scholar
  17. 17.
    Lee, M., Jung, M., Kim, J.: Evolutionary programming-based fuzzy logic path planner and follower for mobile robots. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, Vol 1, pp. 139–144. San Diego, CA (2000)Google Scholar
  18. 18.
    Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočnik, B.: Time optimal planning considering acceleration limits. Robot. Auton. Syst. 45, 199–210 (2003)CrossRefGoogle Scholar
  19. 19.
    Luca, A., Oriolo, G.: Modelling and control of nonholonomic mechanical systems. In: Angeles, J., Kecskemethy, A., (eds.) Kinematics and Dynamics of Multi-Body Systems. Springer-Verlag, Wien, Austria (1995)Google Scholar
  20. 20.
    Luca, A., Oriolo, G., Vendittelli, M.: Control of wheeled mobile robots: An experimental overview. In: Nicosia, S., Siciliano, B., Bicchi, A., Valigi, P., (eds.) RAMSETE - Articulated and Mobile Robotics for Services and Technologies. Springer-Verlag, London, UK (2001)Google Scholar
  21. 21.
    Oblak, S., Škrjanc, I.: A comparison of fuzzy and CPWL approximations in the continuous-time nonlinear model-predictive control of time-delayed Wiener-type systems. J. Intell. Robot. Syst. 47(2), 125–137 (2006)CrossRefGoogle Scholar
  22. 22.
    Oriolo, G., Luca, A., Vandittelli, M.: WMR control via dynamic feed-back linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)CrossRefGoogle Scholar
  23. 23.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sarkar, N., Yun, X., Kumar, V.: Control of mechanical systems with rolling constraints: application to dynamic control of mobile robot. Int. J. Rob. Res. 13(1), 55–69 (1994)CrossRefGoogle Scholar
  25. 25.
    Sheikholeslam, S., Desoer, C.A.: Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system level study. IEEE Trans. Veh. Technol. 42(4), 546–554 (1993)CrossRefGoogle Scholar
  26. 26.
    Yi, S.-Y, Chong K.-T.: Impedance control for a vehicle platoon system. Mechatronics. 15(5), 627–638 (2005)CrossRefGoogle Scholar
  27. 27.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations