Advertisement

A Framework for Simulation and Testing of UAVs in Cooperative Scenarios

  • A. ManciniEmail author
  • A. Cesetti
  • A. Iualè
  • E. Frontoni
  • P. Zingaretti
  • S. Longhi
Article

Abstract

Today, Unmanned Aerial Vehicles (UAVs) have deeply modified the concepts of surveillance, Search&Rescue, aerial photogrammetry, mapping, etc. The kinds of missions grow continuously; missions are in most cases performed by a fleet of cooperating autonomous and heterogeneous vehicles. These systems are really complex and it becomes fundamental to simulate any mission stage to exploit benefits of simulations like repeatability, modularity and low cost. In this paper a framework for simulation and testing of UAVs in cooperative scenarios is presented. The framework, based on modularity and stratification in different specialized layers, allows an easy switching from simulated to real environments, thus reducing testing and debugging times, especially in a training context. Results obtained using the proposed framework on some test cases are also reported.

Keywords

UAVs Simulation Cooperative scenarios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collett, T.H.J., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical robot programming framework. In: Australasian Conf. on Robotics and Automation, ACRA’05, Sydney, 5–7 December 2005Google Scholar
  2. 2.
    Mobilerobots inc. home page. http://www.mobilerobots.com (2008)
  3. 3.
    irobot corporation home page. http://www.irobot.com (2008)
  4. 4.
    Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P.: A framework for simulations and tests of mobile robotics tasks. In: Proceedings of 14th Mediterranean Conference on Control and Automation, MED’06, Ancona, 28–30 June 2006Google Scholar
  5. 5.
    Carmen robot navigation tool kit. http://carmen.sourceforge.net/ (2008)
  6. 6.
    Microsoft: Microsoft robotics studio developer center. http://msdn.microsoft.com/robotics/ (2008)
  7. 7.
    Unified system for automation and robot simulation. http://sourceforge.net/projects/usarsim/ (2008)
  8. 8.
    Microsoft flight simulator. http://www.microsoft.com/games/flightsimulatorX/ (2008)
  9. 9.
  10. 10.
    Jsbsim: Open source flight dynamics model in c++. http://jsbsim.sourceforge.net/ (2008)
  11. 11.
    Rotorlib home page. http://www.rtdynamics.com/v1.0/ (2008)
  12. 12.
    Taamallah, S., de Reus, A.J.C., Boer, J.F.: Development of a rotorcraft mini-uav system demonstrator. The 24th Digital Avionics Systems Conference, DASC’05, Washington, D.C., 30 October–3 November 2005Google Scholar
  13. 13.
    Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P., Longhi, S.: Prototype uav helicopter working in cooperative environments. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM’07, Zurich, 4–7 September 2007Google Scholar
  14. 14.
    Unmanned dynamics - aerosim toolbox. http://www.u-dynamics.com/aerosim/ (2008)
  15. 15.
    Uml resource page. http://www.uml.org (2008)
  16. 16.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA ’04, New Orleans, 26 April–1 May 2004Google Scholar
  17. 17.
    Heffley, R.K., Mnich, M.A.: Minimum-complexity helicopter simulation math model. Technical report, Contractor report NASA 177476, Aeroflightdynamics Directorate, U.S. Army Research and Technology Activity (AVSCOM) (1988)Google Scholar
  18. 18.
    Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 15, 219–229 (1999)CrossRefGoogle Scholar
  19. 19.
    Zingaretti, P., Frontoni, E.: Appearance-based robotics - robot localization in partially explored environments. IEEE Robot. Autom. Mag. 13, 59-68 (2006)CrossRefGoogle Scholar
  20. 20.
    Kwag, Y.K., Chung, C.H.: Uav based collision avoidance radar sensor. In: IEEE International Symposium on Geoscience and Remote Sensing, IGARSS’07, Barcelona, 23–27 July 2007Google Scholar
  21. 21.
    Dong, T., Liao, X.H., Zhang, R., Sun, Z., Song, Y.D.: Path tracking and obstacles avoidance of uavs - fuzzy logic approach. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ’05, Reno, 22–25 May 2005Google Scholar
  22. 22.
    Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, December 1998Google Scholar
  23. 23.
    Bramwell, A.R.S., Done, G., Balmford D.: Bramwell’s Helicopter Dynamics, 2nd edn. Butterworth Heinemann, Boston (2001)Google Scholar
  24. 24.
    Mettler, B., Tischler, M.B., Kanade T.: System identification of small-size unmanned helicopter dynamics. In: Presented at the American Helicopter Society 55th Forum, Montreal, May 1999Google Scholar
  25. 25.
    Sanders, C.P., DeBitetto, P.A., Feron, E., Vuong, H.F., Leveson, N.: Hierarchical control of small autonomous helicopters. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, December 1998Google Scholar
  26. 26.
    Buskey, G., Roberts, J., Corke, P., Wyeth, G.: Helicopter automation a using a low-cost sensing system. Comput. Control Eng. J. 15, 8–9 (2004)Google Scholar
  27. 27.
    Flightgear project http://www.flightgear.org (2008)
  28. 28.
    Fluent cfd flow modeling software http://www.fluent.com (2008)
  29. 29.
    Wang X., Yadav, V., Balakrishnan, S.N.: Cooperative uav formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15, 672–679 (2007)CrossRefGoogle Scholar
  30. 30.
    Lechevin, N., Rabbath, C.A., Sicard, P.: Trajectory tracking of leader-follower formations characterized by constant line-of-sight angles. Automatica 42(12) (2006)Google Scholar
  31. 31.
    Merino, L., Caballero, F., Martinez de Dios, J.R., Ollero, A.: Cooperative fire detection using unmanned aerial vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 05, (2005)Google Scholar
  32. 32.
    Beard, R.W., et al.: Decentralized cooperative aerial surveillance using fixed-wing miniature uav. Proc. IEEE 94(7), 1306–1324 (2006)CrossRefGoogle Scholar
  33. 33.
    Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14(12) (2004)Google Scholar
  34. 34.
    Monteriù, A., Asthana, P., Valavanis, K., Longhi, S.: Experimental validation of a real-time model-based sensor fault detection and isolation system for unmanned ground vehicles. In: Proceedings of 14th Mediterranean Conference on Control and Automation MED’06, Ancona, 28–30 June 2006Google Scholar
  35. 35.
    Monteriù, A., Asthana, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i). In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’07, Roma, 10–14 April 2007Google Scholar
  36. 36.
    Monteriù, A., Asthana, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: Theoretical aspects (part ii). In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’07, Roma, 10–14 April 2007Google Scholar
  37. 37.
    Dzul, A.E., Castillo, P., Lozano, R.: Modelling and Control of Mini-Flying Machines. AIC Advances in Industrial Control. Springer (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Mancini
    • 1
    Email author
  • A. Cesetti
    • 1
  • A. Iualè
    • 1
  • E. Frontoni
    • 1
  • P. Zingaretti
    • 1
  • S. Longhi
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Gestionale e dell’AutomazioneUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations