Journal of Intelligent and Robotic Systems

, Volume 54, Issue 1–3, pp 137–161

Vision-Based Odometry and SLAM for Medium and High Altitude Flying UAVs

Article

Abstract

This paper proposes vision-based techniques for localizing an unmanned aerial vehicle (UAV) by means of an on-board camera. Only natural landmarks provided by a feature tracking algorithm will be considered, without the help of visual beacons or landmarks with known positions. First, it is described a monocular visual odometer which could be used as a backup system when the accuracy of GPS is reduced to critical levels. Homography-based techniques are used to compute the UAV relative translation and rotation by means of the images gathered by an onboard camera. The analysis of the problem takes into account the stochastic nature of the estimation and practical implementation issues. The visual odometer is then integrated into a simultaneous localization and mapping (SLAM) scheme in order to reduce the impact of cumulative errors in odometry-based position estimation approaches. Novel prediction and landmark initialization for SLAM in UAVs are presented. The paper is supported by an extensive experimental work where the proposed algorithms have been tested and validated using real UAVs.

Keywords

Visual odometry Homography Unmanned aerial vehicles Simultaneous localization and mapping Computer vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter fight. In: Proceedings of the Fifth International Conference on Intelligent Autonomous Systems (IAS-5), June 1998Google Scholar
  2. 2.
    Betge-Brezetz, S., Hebert, P., Chatila, R., Devy, M.: Uncertain map making in natural environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1048–1053, April 1996Google Scholar
  3. 3.
    Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13, 251–263 (1997)CrossRefGoogle Scholar
  4. 4.
    Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 2830–2835, May 2006Google Scholar
  5. 5.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: A visual odometer without 3D reconstruction for aerial vehicles. applications to building inspection. In: Proceedings of the International Conference on Robotics and Automation, pp. 4684–4689. IEEE, April 2005Google Scholar
  6. 6.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Improving vision-based planar motion estimation for unmanned aerial vehicles through online mosaicing. In: Proceedings of the International Conference on Robotics and Automation, pp. 2860–2865. IEEE, May 2006Google Scholar
  7. 7.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE International Conference on Robotics and Automation, pp. 2004–2009, April 2007Google Scholar
  8. 8.
    Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: Proceedings of the IEEE Aerospace Conference, pp. 1–10 (2008)Google Scholar
  9. 9.
    Corke, P.I., Sikka, P., Roberts, J.M.: Height estimation for an autonomous helicopter. In: Proceedings of ISER, pp. 101–110 (2000)Google Scholar
  10. 10.
    Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, pp. 1403–1410, October 2003Google Scholar
  11. 11.
    Deans, M., Hebert, M.: Experimental comparison of techniques for localization and mapping using a bearings only sensor. In: Proceedings of the Seventh International Symposium on Experimental Robotics, December 2000Google Scholar
  12. 12.
    Demonceaux, C., Vasseur, P., Pegard, C.: Omnidirectional vision on UAV for attitude computation. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 2842–2847, May 2006Google Scholar
  13. 13.
    Dickmanns, E.D., Schell, F.R.: Autonomous landing of airplanes using dynamic machine vision. In: Proc. of the IEEE Workshop Applications of Computer Vision, pp. 172–179, December 1992Google Scholar
  14. 14.
    Feder, H.J.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Rob. Res. 18(7), 650–668 (1999) JulyCrossRefGoogle Scholar
  15. 15.
    Garcia-Pardo, P.J., Sukhatme, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. Robot. Auton. Syst. 38(1), 19–29 (2001)CrossRefGoogle Scholar
  16. 16.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  17. 17.
    Hrabar, S., Sukhatme, G.S.: Omnidirectional vision for an autonomous helicopter. In: Proceedings of the International Conference on Robotics and Automation, vol. 1, pp. 558–563 (2003)Google Scholar
  18. 18.
    Hygounenc, E., Jung, I.-K., Soueres, P., Lacroix, S.: The autonomous blimp project of LAAS-CNRS: achievements in flight control and terrain mapping. Int. J. Rob. Res. 23(4-5), 473–511 (2004)CrossRefGoogle Scholar
  19. 19.
    Kim, J., Sukkarieh, S.: Autonomous airborne navigation in unknown terrain environments. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1031–1045 (2004) JulyCrossRefGoogle Scholar
  20. 20.
    Kwok, N.M., Dissanayake, G.: An efficient multiple hypothesis filter for bearing-only SLAM. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 736–741, October 2004Google Scholar
  21. 21.
    Lacroix, S., Jung, I.K., Soueres, P., Hygounenc, E., Berry, J.P.: The autonomous blimp project of LAAS/CNRS - current status and research challenges. In: Proceeding of the International Conference on Intelligent Robots and Systems, IROS, Workshop WS6 Aerial Robotics, pp. 35–42. IEEE/RSJ (2002)Google Scholar
  22. 22.
    Langedaan, J., Rock, S.: Passive GPS-free navigation of small UAVs. In: Proceedings of the IEEE Aerospace Conference, pp. 1–9 (2005)Google Scholar
  23. 23.
    Lemaire, T., Lacroix, S., Solà, J.: A practical 3D bearing only SLAM algorithm. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2449–2454 (2005)Google Scholar
  24. 24.
    Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1442–1447, November 1991Google Scholar
  25. 25.
    Ling, L., Ridley, M., Kim, J.-H., Nettleton, E., Sukkarieh, S.: Six DoF decentralised SLAM. In: Proceedings of the Australasian Conference on Robotics and Automation (2003)Google Scholar
  26. 26.
    Mahony, R., Hamel, T.: Image-based visual servo control of aerial robotic systems using linear image features. IEEE Trans. Robot. 21(2), 227–239 (2005)CrossRefGoogle Scholar
  27. 27.
    Mejías, L., Saripalli, S., Campoy, P., Sukhatme, G.S.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field. Robot. 23(3–4), 185–199 (2006)CrossRefGoogle Scholar
  28. 28.
    Montiel, J., Civera J, Davison, A.: Unified inverse depth parametrization for monocular SLAM. In: Robotics: Science and Systems, August 2006Google Scholar
  29. 29.
    Ollero, A., Ferruz, J., Caballero, F., Hurtado, S., Merino, L.: Motion compensation and object detection for autonomous helicopter visual navigation in the COMETS system. In: Proceedings of the International Conference on Robotics and Automation, ICRA, pp. 19–24. IEEE (2004)Google Scholar
  30. 30.
    Ollero, A., Merino, L.: Control and perception techniques for aerial robotics. Annu. Rev. Control, Elsevier (Francia), 28, 167–178 (2004)CrossRefGoogle Scholar
  31. 31.
    Papadopoulo, T., Lourakis, M.I.A.: Estimating the jacobian of the singular value decomposition: theory and applications. In: Proceedings of the 2000 European Conference on Computer Vision, vol. 1, pp. 554–570 (2000)Google Scholar
  32. 32.
    Proctor, A.A., Johnson, E.N., Apker, T.B.: Vision-only control and guidance for aircraft. J. Field. Robot. 23(10), 863–890 (2006)CrossRefGoogle Scholar
  33. 33.
    Remuss, V., Musial, M., Hommel, G.: Marvin - an autonomous flying robot-bases on mass market. In: International Conference on Intelligent Robots and Systems, IROS. Proceedings of the Workshop WS6 Aerial Robotics, pp. 23–28. IEEE/RSJ (2002)Google Scholar
  34. 34.
    Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003) JuneCrossRefGoogle Scholar
  35. 35.
    Saripalli, S., Sukhatme, G.S.: Landing on a mobile target using an autonomous helicopter. In: Proceedings of the International Conference on Field and Service Robotics, FSR, July 2003Google Scholar
  36. 36.
    Shakernia, O., Vidal, R., Sharp, C., Ma, Y., Sastry, S.: Multiple view motion estimation and control for landing an aerial vehicle. In: Proceedings of the International Conference on Robotics and Automation, ICRA, vol. 3, pp. 2793–2798. IEEE, May 2002Google Scholar
  37. 37.
    Srinivasan, M.V., Zhang, S.W., Garrant, M.A.: Landing strategies in honeybees, and applications to UAVs. In: Springer Tracts in Advanced Robotics, pp. 373–384. Springer-Verlag, Berlin (2003)Google Scholar
  38. 38.
    Triggs, B.: Autocalibration from planar scenes. In: Proceedings of the 5th European Conference on Computer Vision, ECCV, vol. 1, pp. 89–105. Springer-Verlag, London, UK (1998)Google Scholar
  39. 39.
    Tsai, R.Y., Huang, T.S., Zhu, W.-L.: Estimating three-dimensional motion parameters of a rigid planar patch, ii: singular value decomposition. IEEE Trans. Acoust. Speech Signal Process. 30(4), 525–534 (1982) AugustCrossRefGoogle Scholar
  40. 40.
    Vidal, R., Sastry, S., Kim, J., Shakernia, O., Shim, D.: The Berkeley aerial robot project (BEAR). In: Proceeding of the International Conference on Intelligent Robots and Systems, IROS, pp. 1–10. IEEE/RSJ (2002)Google Scholar
  41. 41.
    Vidal-Calleja, T., Bryson, M., Sukkarieh, S., Sanfeliu, A., Andrade-Cetto, J.: On the observability of bearing-only SLAM. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 1050–4729, April 2007Google Scholar
  42. 42.
    Volpe, J.A.: Vulnerability assessment of the transportation infrastructure relying on the global positioning system. Technical report, Office of the Assistant Secretary for Transportation Policy, August (2001)Google Scholar
  43. 43.
    Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. In: Proc. of AIAA Guidance, Navigation, and Control Conference and Exhibit (2005)Google Scholar
  44. 44.
    Yakimenko, O.A., Kaminer, I.I., Lentz, W.J., Ghyzel, P.A.: Unmanned aircraft navigation for shipboard landing using infrared vision. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1181–1200 (2002) OctoberCrossRefGoogle Scholar
  45. 45.
    Zhang, Z., Hintz, K.J.: Evolving neural networks for video attitude and hight sensor. In: Proc. of the SPIE International Symposium on Aerospace/Defense Sensing and Control, vol. 2484, pp. 383–393 (1995) AprilGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.University of SevilleSevilleSpain
  2. 2.Pablo de Olavide UniversitySevilleSpain

Personalised recommendations