UAVs Integration in the SWIM Based Architecture for ATM

  • Nicolás Peña
  • David Scarlatti
  • Aníbal Ollero


The System Wide Information Management (SWIM) approach has been conceived to overcome the capacity and flexibility limitations of the current ATM systems. On the other hand the commercial applications of Unmanned Aerial Vehicles (UAVs) require the integration of these vehicles in the ATM. From this perspective, the unavoidable modernization of the ATM is seen as an opportunity to integrate the UAVs with the rest of the air traffic. This paper is devoted to study the feasibility and impact of the aggregation of UAVs on the future ATM supported by a SWIM inspired architecture. Departing from the existing technical documents that describe the fundamentals of SWIM we have explored the compatibility with a potential UAVs integration and also explored how the UAVs could help to improve the future ATM system. We will use the weather application as an example in both cases.


UAV Air traffic management System wide information management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boeing Technology: Phantom works. Advanced Air Technology Management. Accessed 24 October 2007
  2. 2.
    SWIM Program Overview: (redirects to Accessed 9 May 2008
  3. 3.
    System-Wide Information Management (SWIM) Architecture and Requirements. CNS-ATM Task 17 Final Report, ITT Industries, Advanced Engineering and Sciences Division, 26 March 2004Google Scholar
  4. 4.
    Jin, J., Gilbert, T., Henriksen, S., Hung, J.: ATO-P (ASD 100)/ITT SWIM Architecture Development. CNS-ATM, 29 April 2004Google Scholar
  5. 5.
    Koeners, G.J.M., De Vries, M.F.L., Goossens, A.A.H.E., Tadema, J., Theunissen, E.: Exploring network enabled airspace integration functions for a UAV mission management station. 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA, Oct. 2006, pp. 1–11Google Scholar
  6. 6.
    Carbone, C., Ciniglio, U., Corraro, F., Luongo, S.: A novel 3D geometric algorithm for aircraft autonomous collision avoidance. In: 45th IEEE Conference on Decision and Control (CDC’06), pp. 1580–1585. San Diego, California, December 2006Google Scholar
  7. 7.
    UAV safety issues for civil operations (USICO), FP5 Programme Reference: G4RD-CT-2002-00635Google Scholar
  8. 8.
    Le Tallec, C., Joulia, A.: IFATS an innovative future air transport system concept. In: 4th Eurocontrol Innovative Research Workshop, December 2005Google Scholar
  9. 9.
    UAV Roadmap 2005–2030 – Office of the Secretary of Defense, August 2005Google Scholar
  10. 10.
    Everaerts, J., Lewyckyj, N., Fransaer, D.: Pegasus: design of a stratospheric long endurance UAV system for remote sensing. In: Proceedings of the XXth ISPRS Congress, July 2004Google Scholar
  11. 11.
    Weather Information Interface: Accessed 9 April 2007
  12. 12.
    metaf2xml: convert METAR and TAF messages to XML. Project web site: Accessed 25 May 2006
  13. 13.
    FlightGear Flight Simulator Project Homepage: Accessed 5 May 2008
  14. 14.
    Meserole, C.: Global communications, navigation, & surveillance systems program – progress and plans. In: 5th Integrated CNS Technologies Conference & Workshop, May 2005Google Scholar
  15. 15.
    Romeo, G., Frulla, G.: HELIPLAT: high altitude very-long endurance solar powered UAV for telecommunication and earth observation applications. Aeronaut. J. 108(1084), 277–293 (2004)Google Scholar
  16. 16.
    Merino, L., Caballero, F., Martínez-de Dios, J.R., Ollero, A.: Cooperative fire detection using unmanned aerial vehicles. In: Proceedings of the 2005 IEEE, IEEE International Conference on Robotics and Automation, Barcelona (Spain), April 2005Google Scholar
  17. 17.
    Ollero, A., Maza, I.: Multiple Heterogeneous Unmanned Aerial Vehicles. Springer Tracts on Advanced Robotics. Springer, Berlin (2007)Google Scholar
  18. 18.
    Aeronautical Information Management Strategy, V4.0. EUROCONTROL, Brussels, Belgium March 2006Google Scholar
  19. 19.
    Merino, L., Caballero, F., Martínez-de Dios, J.R., Ferruz, J., Ollero, A.: A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. J. Field Robot 23(3), 165–184 (2006)CrossRefGoogle Scholar
  20. 20.
    Beard, R.W., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., McLain, T., Goodrich, M.: Autonomous vehicle technologies for small fixed-wing UAVs. J. Aerosp. Comput. Inform. Commun. 2(1), 92–108 (2005)CrossRefGoogle Scholar
  21. 21.
    Alcázar, J., Cuesta, F., Ollero, A., Nogales, C., López-Pichaco, F.: Teleoperación de helicópteros para monitorización aérea en COMETS (in Spanish). XXIV Jornadas de Automática (JA 2003), León (Spain), 10–12 Septiembre 2003Google Scholar
  22. 22.
    Sørensen, C.F., Wu, M., Sivaharan, T., et al.: A context-aware middleware for applications in mobile AdHoc Environments. In: Proceedings of the 2nd Workshop on Middleware for Pervasive and Ad-hoc Computing Table of Contents. Toronto (2004)Google Scholar
  23. 23.
    Soetens, H., Koninckx, P.: The real-time motion control core of the Orocos project Bruyninckx, Robotics and Automation. In: Proceedings. ICRA ‘03. (2003)Google Scholar
  24. 24.
    Lam, T.M., Mulder, M., van Paassen, M.M.: Collision avoidance in UAV tele-operation with time delay, conference on systems, man and cybernetics. ISIC. IEEE International. Montreal, October 2007Google Scholar
  25. 25.
    Loh, R., Wullschleger, V., Elrod, B., Lage, M., Haas, F.: The U.S. wide-area augmentation system (WAAS). Journal Navigation 42(3), 435–465 (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicolás Peña
    • 1
  • David Scarlatti
    • 2
  • Aníbal Ollero
    • 1
  1. 1.University of Seville, Robotics, Vision and Control GroupSevillaSpain
  2. 2.Boeing Research & Technology Europe – Cañada Real de las MerinasMadridSpain

Personalised recommendations