Hopping on Even Ground and Up Stairs with a Single Articulated Leg

  • Q. Guo
  • C. J. B. MacnabEmail author
  • J. K. Pieper


This paper presents a method for generating gaits for a one-legged articulated hopping robot. A static optimization procedure produces the initial joint velocities for the flight phase, using the principle of conservation of angular momentum and assuming (nearly) passive flight. Two novel objective functions for this static optimization enable one to choose different gaits by simply changing a few parameters. A dynamic optimization procedure yields a solution for the flight trajectory that minimizes control effort. The stance phase (when the foot is touching the ground) becomes a standard two point boundary value problem, also solved with a dynamic optimization procedure. During the stance phase, the physical joint limitations, ground reaction forces, and the trajectory of the zero-moment point all constrain the solution. After these single-phase optimizations, a complete-cycle optimization procedure, incorporating both flight and stance phases, further reduces the control effort and balances the motion phases. In simulation, the leg hops on even ground and up stairs, exhibiting energy-efficient and intuitively satisfying gaits.


Hopping robots Running robots Nearly passive flight phase Dynamic optimization 


  1. 1.
    Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006)CrossRefGoogle Scholar
  2. 2.
    Alexander, R. McN.: A model of bipedal locomotion on compliant legs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 338(1284), 189–198 (1992)CrossRefGoogle Scholar
  3. 3.
    Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robotics 1(1), 157–173 (2004)CrossRefGoogle Scholar
  4. 4.
    Sardain, P., Bessonnet G.: Forces acting on a biped robot: center of pressure - zero moment point. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 34(5), 630–637 (2004)CrossRefGoogle Scholar
  5. 5.
    Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Rob. Res. 24(12), 1013–1032 (2005)CrossRefGoogle Scholar
  6. 6.
    Kondak, K., Hommel, G.: Control of online computation of stable movement for biped robots. In: Proceedings of the IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, pp. 874–879. Las Vegas (2003)Google Scholar
  7. 7.
    Westervelt, E.: Toward a coherent framework for the control of planar biped locomotion. Ph.D. Dissertation, University of Michigan at Ann Arbor, June (2003)Google Scholar
  8. 8.
    Raibert, M.H.: Legged Robots That Balance. The MIT Press (1986)Google Scholar
  9. 9.
    Gregorio, P., Ahmadi, M., Buehler, M.: Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. 27B(4), 626–634 (1997)Google Scholar
  10. 10.
    Ahmadi, M., Buehler, M.: Stable control of a simulated one-legged running robot with hip and leg compliance. IEEE Trans. Robot. Autom. 13(1), 96–103 (1997)CrossRefGoogle Scholar
  11. 11.
    Brown, B., Zeglin, G.: The bow leg hopping robot. In: Intl. Conf. Robotics and Automation, pp. 781–786. Leuven, Belgium (1998)Google Scholar
  12. 12.
    De Man, H., Lefeber, D., Vermeulen, J.: Control on irregular terrain of a hopping robot with one articulated leg. In: ICAR Workshop II: New Approaches on Dynamic Walking and Climbing Machines, pp. 72–76. Monterey, CA (1997)Google Scholar
  13. 13.
    Vermeulen, J.: Trajectory generation for planar hopping and walking robots: an objective parameter and angular momentum approach. Ph.D. Dissertation, Vrije Universiteit Brussel, Belgium (2004)Google Scholar
  14. 14.
    Ikeda, T., Iwatani, Y., Suse, K., Mita, T.: Analysis and design of running robots in touchdown phase. In: Proceedings Intl. Conf. Control and Automation, pp. 496–501. Hawaii (1999)Google Scholar
  15. 15.
    Hyon, S., Emura, T., Mita, T.: Dynamics-based control of a one-legged hopping robot. J. Syst. Control Eng. 217(2), 83–98 (2003)Google Scholar
  16. 16.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley & Sons (2006)Google Scholar
  17. 17.
    Cabodevila, G., Abba, G.: Quasi optimal gait for a biped robot using genetic algorithm. In: Proceedings of the IEEE Intl. Conf. Systems, Man and Cybernetics, Computational Cybernetics and Simulations, pp. 3960–3965. Orlando, FL (1997)Google Scholar
  18. 18.
    Channon, P.H., Hopkins, S.J., Pham, D.H.: Simulation and optimal walking motions for a bipedal robot. Math. Comput. Model. 14, 463–467 (1990)CrossRefGoogle Scholar
  19. 19.
    Channon, P.H., Hopkins, S.J., Pham, D.H.: Derivation of optimal walking motions for a bipedal walking robot. Robotica 10, 165–172 (1992)CrossRefGoogle Scholar
  20. 20.
    Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19, 557–569 (2001)CrossRefGoogle Scholar
  21. 21.
    Hardt, M.W.: Multibody Dynamical Algorithms, Numerical Optimal Control, with Detailed Studies in the Control of Jet Engine Compressors and Biped Walking. Ph.D. Dissertation, UCSD (1999)Google Scholar
  22. 22.
    Yen, V., Nagurka, M.L.: Suboptimal trajectory planning of a five-link human locomotion model. In: Stein, J.L. (ed.) Biomechanics of Normal and Prosthetic Gait, BED-vol. 4 and DSC vol. 7, pp. 17–22. ASME Winter Annual Meeting, Boston, MA (1987)Google Scholar
  23. 23.
    Azevedo, C., Poignet, P., Espiau, B.: Moving horizon control for biped robots without reference trajectory. In: Proceedings Intl. Conf. Robotics and Automoation, vol. 3, pp. 2762–2767. Washington, DC (2002)Google Scholar
  24. 24.
    Rostami, M., Bessonnet, G.: Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion. Robotica 19, 241–253 (2001)Google Scholar
  25. 25.
    Bessonnet, G., Chesse, S., Sardain, P.: Optimal gait synthesis of a seven-link planar biped. Int. J. Rob. Res. 23(10–11), 1059–1073 (2004)CrossRefGoogle Scholar
  26. 26.
    Roussel, L., Canudas de Wit, C., Goswami, A.: Comparative study of method for energy-optimal gait eneration for biped robots. In: Proceedings Intl. Conf. Informatics and Control, pp. 1205–1212. St. Petersburg (1997)Google Scholar
  27. 27.
    Becerra, V.M.: Solving optimal control problems with state constraints using nonlinear programming and simulation tools. IEEE Trans. Educ. 47(3), 377–384 (2004)CrossRefGoogle Scholar
  28. 28.
    Meghdari, A., Aryanpour, M.: Dynamic modeling and analysis of the human jumping process. J. Intell. Robot. Syst. 37(1), 97–115 (2003)CrossRefGoogle Scholar
  29. 29.
    Fujimoto, Y.: Trajectory generation of biped running robot with minimum energy consumption. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 3803–3808 (2004)Google Scholar
  30. 30.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)CrossRefGoogle Scholar
  31. 31.
    Lesbastard, V., Aoustin, Y., Plestan, Y.: Observer-based control of a walking biped robot without orientation measurement. Robotica 24, 384–400 (2006)Google Scholar
  32. 32.
    Hass, J., Herrmann, J.M., Geisel T.: Optimal mass distribution for passivity-based bipedal robots. Int. J. Rob. Res. 25, 11, 1087–1098 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Mechanical EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations