Advertisement

DSP/FPGA-based Controller Architecture for Flexible Joint Robot with Enhanced Impedance Performance

  • J. B. HuangEmail author
  • Z. W. Xie
  • H. Liu
  • K. Sun
  • Y. C. Liu
  • Z. N. Jiang
Article

Abstract

Some practical issues associated with enhancing the Cartesian impedance performance of flexible joint manipulator are investigated. A digital signal processing/field programmable gate array (DSP/FPGA) structure is proposed to realize the singular perturbation based impedance controller. To increase the bandwidth of torque control and minimize the joint torque ripple, boundary layer system and field-oriented control (FOC) are fully implemented in a FPGA of each joint. The kernel of the hardware system is a peripheral component interface (PCI)-based high speed floating-point DSP for the Cartesian level control, and FPGA for high speed (200 us cycle time) multipoint low-voltage differential signaling (M-LVDS) serial data bus communication between robot Cartesian level and joint level. Experimental results with a four-degree-of-freedom flexible-joint manipulator under constrained-motion task, demonstrate that the controller architecture can enhance the robot impedance performance effectively.

Keywords

Impedance control DSP FPGA M-LVDS serial data bus Torque ripple Flexible joint 

References

  1. 1.
    Hogan, N.: Impedance control: an approach to manipulation: theory (part 1); implementation (part 2); applications (part 3). J. Dyn. Syst. Meas. Control 107, 1–24 (1985)zbMATHGoogle Scholar
  2. 2.
    Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators: the fundamental concepts of compliant motion (part I); design method (part II). IEEE J. Robot. Autom. RA-2(2), 83–105 (1986)Google Scholar
  3. 3.
    Khatib, O.: A unified approach for motion and force control of robotic manipulators. The operational space formulation. IEEE J. Robot. Autom. RA3(1), 43–53 (1987)Google Scholar
  4. 4.
    Spong, M.: Adaptive control of flexible joint manipulators: comments on two papers. Automatica 31(4), 585–590 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ott, Ch., Albu-Schäffer, A., Kugi, A., Stramigioli, S., Hirzinger, G.: A passivity based Cartesian impedance controller – part I: torque feedback and gravity compensation. In: 2004 IEEE Int. Conf. Robot. Autom. 3, 2659–2665 (2004)Google Scholar
  6. 6.
    Takahashi, T., Goetz, J.: Implementation of complete AC servo control in a low cost FPGA and subsequent ASSP conversion. Appl. Power Electron. Conference Exposition 1, 565–570 (2004)Google Scholar
  7. 7.
    Tzou, Y.Y., Kuo, T.S.: Design and implementation of an FPGA based motor control IC for permanent magnet AC servo motors. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 2, pp. 943–947 (1997)Google Scholar
  8. 8.
    Paramasivam, S., Aumugam, R., Vijayan, S., etc: Ingenious digital controller for switched reluctance motor using Verilog (HDL). In: Conference on Convergent Technologies for Asia-Pacific Region, vol. 3, pp. 993–997 (2003)Google Scholar
  9. 9.
    Dubey, R., Agarwal, P., Vasantha, M.K.: FPGA based PMAC motor control for system-on-chip applications. In: Proceedings of First International Conference on Power Electronics Systems and Application, pp. 194–200 (2004)Google Scholar
  10. 10.
    Spong, M.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109(4), 310–319 (1987)zbMATHCrossRefGoogle Scholar
  11. 11.
    TI Corporation: TMS320C6711, TMS320C6711B, TMS320C6711C, Floating-point digital signal processors. The technology document of TI Company (1999)Google Scholar
  12. 12.
    Vas, P.: Vector Control of AC Machines [M]. New York: Oxford University Press (1990)Google Scholar
  13. 13.
    Zhou, Z., Li, T., Takahashi, T.: FPGA realization of a high-performance servo controller for PMSM. Anaheim: APEC2004, 1604–1609 (2004)Google Scholar
  14. 14.
    Taghirad, H.D., Belanger, P.R.: Intelligent built-in torque sensor for harmonic drive systems. IEEE Trans. Instrum. Meas. 48(6), 1201–1207 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. B. Huang
    • 1
    Email author
  • Z. W. Xie
    • 1
  • H. Liu
    • 1
    • 2
  • K. Sun
    • 1
  • Y. C. Liu
    • 1
  • Z. N. Jiang
    • 1
  1. 1.Institute of RoboticsHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)OberpfaffenhofenGermany

Personalised recommendations