Advertisement

Journal of Intelligent and Robotic Systems

, Volume 52, Issue 3–4, pp 465–488 | Cite as

A Multi-Modal Haptic Interface for Virtual Reality and Robotics

  • Michele Folgheraiter
  • Giuseppina Gini
  • Dario Vercesi
Article

Abstract

In this paper we present an innovative haptic device that combines the electro-tactile stimulation with the force and visual feedbacks in order to improve the perception of a virtual world. We discuss the sensation evoked in a user by the haptic, force, and the visual interface as provided by this device, implemented as a special glove, equipped with sensors and actuators connected to a PC. The techniques used to recreate tactile and kinesthetic sensations are based on an innovative use of cutaneous stimulation integrated with actuators and 3D modelling techniques. We discuss about the specificity of haptic interfaces, their controllers, their open problems. We present results about generating the sensation of touching virtual objects with our device. Experiments show also that, using a multi-modal sensorial pattern of stimulation, the subject perceives more realistically the virtual object. We discuss the possible use of the same technique as a way to interface intelligent robots.

Keywords

Virtual reality Electro-tactile stimulation Haptic devices Robotic grasp Haptic display 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heller Morton, A.: Tactile picture perception in sighted and blind people. Behav. Brain Res. 135(1–2), 65–68 (2002) SeptemberCrossRefGoogle Scholar
  2. 2.
    Asamura N., Tomori N., Shinoda H.: A tactile feeling display based on selective stimulation to skin receptors. In: Proc. IEEE Virtual Reality Annual International Symposium, Atlanta, 14–18 March 1998Google Scholar
  3. 3.
    Caldwell D.G., Tsagarakis N., Giesler C.: Integrated tactile/shear feedback array for stimulation of finger mechanoreceptor. In: Proc. IEEE International Conference on Robotics and Automation, vol. 1, pp. 287–292. IEEE, Piscataway (1999)Google Scholar
  4. 4.
    Yoshikawa T., Nagura A.: A touch force display system for haptic interface. Presence: Teleoperators and Virtual Environments 10(2), 225–235 (2001) AprilCrossRefGoogle Scholar
  5. 5.
    Kaczmarek, K.A., Webster, J.G.: Voltage-current characteristics of the electrotactile skin.electrode interface. In: IEEE Engineering in Medicine and Biology Society 11TH Annual International Conference. IEEE, Piscataway (1989)Google Scholar
  6. 6.
    Kaczmarek, K.A., Haase, S.J.: Pattern identification as a function of stimulation current on a fingertip-scanned electrotactile display. IEEE Trans. Neural Syst. Rehabil. Eng. 11(3), 269–275 (2003) SeptemberCrossRefGoogle Scholar
  7. 7.
    Kajimoto H., Kawakami N., Tachi S., Inami M.: Smarttouch: electric skin to touch the untouchable. IEEE Comput. Graph. Appl. 24(1), 36–43 (2004) January–FebruaryCrossRefGoogle Scholar
  8. 8.
    Kajimoto, H., Kawakami, N., Maeda, T., Tachi, S.: Tactile feeling display using functional electrical stimulation. In: Proc. ICAT’99, Tokyo, December 1999Google Scholar
  9. 9.
    Poletto, C.J., Van Doren, C.L.: A high voltage, constant current stimulator for electrocutaneous stimulation through small electrodes. IEEE Trans. Biomed. Eng. 46(8), 929–936 (1999) AugustCrossRefGoogle Scholar
  10. 10.
    Perez C.A., Holzmann C.A., Osorio M.E.: Optimization of the envelope of a short duty cycle pulse waveform for tactile stimulation. In: IEEE Proc. Engineering in Medicine and Biology Society 17th Annual Conference, vol. 2, pp. 1137–1138. IEEE, Piscataway, September 1995Google Scholar
  11. 11.
    Salisbury, K.J.: Making graphics physically tangible. Commun. ACM 42(8), 75–81 (1999) AugustCrossRefGoogle Scholar
  12. 12.
    Ruspini, D., Khatib, O.: A framework for multi-contact multi-body dinamic simulation and haptic display. In: International Conference on Intelligent Robots and Systems, Takamatsu, October 2000Google Scholar
  13. 13.
    Folgheraiter, M., Baragiola, I., Gini, G.: Teaching grasping to a humanoid hand as a generalization of human grasping data. Lect. Notes Comput. Sci. 3303, 139 (2004)CrossRefGoogle Scholar
  14. 14.
    Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., Taylor II, R.M.: Adding force feedback to graphics systems issues and solutions. In: Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pp. 447–452. New Orleans, Louisiana, ACM SIGGRAPH. ISBN 0-201-94800-1. Addison Wesley, Redwood City, August 1996Google Scholar
  15. 15.
    Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)CrossRefGoogle Scholar
  16. 16.
    Hannaford, B., Ryu, J.-H.: Time domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18, 1–10 (2002) FebruaryCrossRefGoogle Scholar
  17. 17.
    Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17(6), 539–558 (2000) NovemberCrossRefGoogle Scholar
  18. 18.
    Wheat, H.E., Salo, L.M., Goodwin, A.W.: Human ability to scale and discriminate forces typical of those occurring during grasp and manipulation. J. Neurosci. 24(13), 3394–3401 (2004) MarchCrossRefGoogle Scholar
  19. 19.
    Brisben, A.J., Hsiao, S.S., Johnson, K.O.: Detection of vibration transmitted through an object grasped in the hand. J. Neurophysiol. 81, 1548–1558 (1999) AprilGoogle Scholar
  20. 20.
    Collins, D.F., Prochazka, A.: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Physiol. 496(3), 857–871 (1996)Google Scholar
  21. 21.
    Kaczmarek, K.A., Webster, J.G.: Voltage-current characteristics of the electrotactile skin-electrode interface. In: IEEE Proceeding Annual International Conference Eng. Med. Biol. Soc., 11. IEEE, Piscataway (1989)Google Scholar
  22. 22.
    Hudson, T., Lin, M., Cohen, J., Gottschalk, S., Manocha, D.: V-collide: accelerated collision detection for vrml. In: Proc. of VRML ’97 (1997)Google Scholar
  23. 23.
    Kaczmarek, K.A.: Electrotactile adaptation on the abdomen: preliminary results. IEEE Trans. Rehabil. Eng. 8(4), 499–505 (2000) DecemberCrossRefGoogle Scholar
  24. 24.
    Hahn, J.F.: Tactile adaptation. In: Kenshalo, D.R. (ed.) The Skin Senses. C.C. Thomas, Springfield (1968)Google Scholar
  25. 25.
    Bach-Y-Rita, P., Tyler, M.E., Kaczmarek, K.A.: Seeing with the brain. Int. J. Hum.-Comput. Interact. 15(2), 285–295 (2003)CrossRefGoogle Scholar
  26. 26.
    Stevens, S.S.: Neural events and the psychophysical law. Science 170(962), 1043–1050 (1970) DecemberCrossRefGoogle Scholar
  27. 27.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)Google Scholar
  28. 28.
    Kajimoto, H., Kawakami, N., Maeda, T., Tachi, S.: Tactile feeling display using functional electrical stimulation. In: Proc. ICAT’99, Tokyo, December 1999Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michele Folgheraiter
    • 1
  • Giuseppina Gini
    • 1
  • Dario Vercesi
    • 1
  1. 1.Dipartimento di Elettronica e Informazione (DEI)Politecnico di Milano (Technical University of Milan)MilanoItaly

Personalised recommendations