Issues on Autonomous Agents from a Roboticle Perspective

  • A. D’Angelo
  • E. Pagello
  • H. Yuasa


Autonomous robots, like living systems, must be adaptive in nature if we want them to preserve their integrity while completing their mission. The challenge to survive in their environment is better accomplished if they are open systems, interacting with the environment by exchanging matter, energy, information, and so on. The roboticle framework, presented here forth, is an attempt to model how the autonomous robot control unit works. It borrows from living systems the idea that sensing and acting on the environment can be recognized as a mechanism exchanging energy with the environment in order to maintain an highly organized internal control structure to resist to external applied perturbations. The necessary energy balancing is provided by an autopoietic loop which is fed by the energy entering the robot through its sensor devices and it is dissipated by its effectors for properly acting in the environment. The autopoietic loop is also responsible of the adaptive properties of the robot.


Autonomous robots Roboticle framework Autopoietic loop 


  1. 1.
    Adami, C.: Introduction to Artificial Life. Springer, New York (1998)zbMATHGoogle Scholar
  2. 2.
    Anderson, T.L., Donath, M.: Animal behaviour as a paradigm for developing robot autonomy. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 145–168. MIT, Cambridge (1990)Google Scholar
  3. 3.
    Arkin, R.C.: Integrating behavoural perceptual and world knowledge in reactive navigation. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 105–122. MIT, Cambridge (1990)Google Scholar
  4. 4.
    Arkin, R.C.: Behavior-Based Robotics. MIT, Cambridge (1998)Google Scholar
  5. 5.
    Beer, R.D.: A dynamical system perspective on agent-environment interaction. Artif. Intell. 72(1–2), 173–215 (1995)CrossRefGoogle Scholar
  6. 6.
    Breitenberg, V.: Vehicles, Experiments in Synthetic Psychology. MIT, New York (1996)Google Scholar
  7. 7.
    Brooks, R.: A layered intelligent control system for a mobile robot. IEEE J. Robot. Autom. RA-2, 14–23 (1986)MathSciNetGoogle Scholar
  8. 8.
    Brooks, R.A.: Intelligence without reason. IJCAI 1, 569–595 (1991)Google Scholar
  9. 9.
    Connell, J.H.: Minimalist Mobile Robotics. Number 5 in Perspective in Artificial Intelligence. Academic, London (1990)Google Scholar
  10. 10.
    D’Angelo, A., Montesello, F., Pagello, E.: Building autonomy within self-organizing dynamical agents. In: Pagello, E., Groen, F., Arai, T., Dillmann, R., Stentz, A. (eds.) Intelligent Autonomous Systems 6 (IAS-6), Venezia, 25–28 July, pp. 43–50. IOS, Amsterdam (2000)Google Scholar
  11. 11.
    D’Angelo, A., Montesello, F., Pagello, E.: Can representation be liberated from symbolism: modeling robot actions with roboticles. In: Horn, W. (ed.) Proceedings of European Conference on Artificial Intelligence (ECAI-2000), pp. 658–662, Berlin, 20–26 August 2000Google Scholar
  12. 12.
    D’Angelo, A., Ota, J., Pagello, E.: How intelligent behavior can emerge from a group of roboticles moving around. In: Proceedings of Intelligent Robots and Sistems (IROS’03), pp. 1733–1738, Las Vegas, 27–31 October 2003Google Scholar
  13. 13.
    D’Angelo, A., Pagello, E.: Making collective behaviours to work through implicit communication. In: Casals, A., Dillmann, R., Giralt, G. (eds.) Proceedings of International Conference on Robotics and Automation (ICRA-05), pp. 81–87, Barcelona, 18–22 April 2005Google Scholar
  14. 14.
    Langton, C. (ed.): Artificial Life: An Overview. MIT, Cambridge (1995)Google Scholar
  15. 15.
    Haken, H.: Synergetics: an approach to self-organization. In: Yates, F.E. (ed.) Self-Organizing Systems. Plenum, New York (1987)Google Scholar
  16. 16.
    Jaeger, H.: The dual dynamics design scheme for behaviour-based robots: a tutorial. Technical Report 966, GMD, St. Augustin (D) (1996)Google Scholar
  17. 17.
    Kaelbling, L.P., Rosenschein, S.J.: Action and planning in embedded agents. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 35–48. MIT, Cambridge (1990)Google Scholar
  18. 18.
    Kay, J.: Self_organization in living systems, Chapter 2. Ph.D. thesis, Ontario, Canada (1984)Google Scholar
  19. 19.
    Scott Kelso, J.A.: Dynamic Patterns: The Self-Organization of Brain and Behaviour. Bredford Book. MIT, Cambridge (1995)Google Scholar
  20. 20.
    Maes, P.: Situated agents can have goals. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 49–70. MIT, Cambridge (1990)Google Scholar
  21. 21.
    McFarland, D., Bosser, U.: Intelligent Behavior in Animals and Robots. MIT, Cambridge (1993)Google Scholar
  22. 22.
    Moravec, H.: Mind Age: The Future of Robot and Human Intelligence. Harvard University Press, Cambridge (1988)Google Scholar
  23. 23.
    Pagello, E., D’Angelo, A., Montesello, F., Garelli, F., Ferrari, C.: Cooperative behaviors in multi-robot systems through implicit communication. Robot. Auton. Syst. 29(1), 65–77 (1999)CrossRefGoogle Scholar
  24. 24.
    Pagello, E., Ferrari, C., D’Angelo, A., Montesello, F.: Intelligent multirobot systems perfoming cooperative tasks. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, 12–15 October 1999Google Scholar
  25. 25.
    Perelson, A.S.: Network thermodynamics. An overview. Biophys. J. 15(7), 667–685 (1975)CrossRefGoogle Scholar
  26. 26.
    Pfeifer, R.: Building fungus eaters: design principles of autonomous agents. In: Maes, P., Mataric, M.J., Meyer, J.A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats 4, Simulation of Adaptive Behaviour (SAB96), pp. 3–12, Cape Cod, 9–13 September (1996)Google Scholar
  27. 27.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT, Cambridge (1999)Google Scholar
  28. 28.
    Prigogine, I., Stengers, I.: Order out of Chaos. Bantam, New York (1984)Google Scholar
  29. 29.
    Schoener, G., Dose, M., Engels, C.: Dynamycs of behaviour: theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16(2–4), 213–245 (1995)CrossRefGoogle Scholar
  30. 30.
    Sipper, M.: Fifty years research on self-replication: an overview. Artif. Life 4(3), 237–257 (1998)CrossRefGoogle Scholar
  31. 31.
    Steels, L.: Discovering the competitors. Adapt. Behav. 4(2), (1996)Google Scholar
  32. 32.
    Steels, L.: Intelligence—dynamics and representation. In: Steels, L. (ed.) The biology and Technology of Intelligent Autonomous Agents, Nato ASI. Springer, Berlin (1995)Google Scholar
  33. 33.
    Steinhage, A., Schoener, G.: The dynamic approach to autonomous robot navigation. In: IEEE International Symposium on Industrial Electronics (ISIE’97), pp. 7–12. IEEE, Piscataway (1997)Google Scholar
  34. 34.
    Varela, F.: Describing the logic of living: the adequacy and limitations of the idea of autopoiesis. In: Zeleny, M. (ed.) Autopoiesis: A Theory of Living Organization, pp. 36–48. North Holland, New York (1981)Google Scholar
  35. 35.
    Varela, F., Maturana, H., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly
  2. 2.Department of Electronics and EngineeringUniversity of PaduaPadovaItaly
  3. 3.Department of Precision MachineryUniversity of TokyoTokyoJapan

Personalised recommendations