Advertisement

Journal of Intelligent and Robotic Systems

, Volume 51, Issue 2, pp 203–233 | Cite as

A Prey Catching and Predator Avoidance Neural-Schema Architecture for Single and Multiple Robots

  • Alfredo Weitzenfeld
Article

Abstract

The paper presents a biologically inspired multi-level neural-schema architecture for prey catching and predator avoidance in single and multiple autonomous robotic systems. The architecture is inspired on anuran (frogs and toads) neuroethological studies and wolf pack group behaviors. The single robot architecture exploits visuomotor coordination models developed to explain anuran behavior in the presence of preys and predators. The multiple robot architecture extends the individual prey catching and predator avoidance model to experiment with group behavior. The robotic modeling architecture distinguishes between higher-level schemas representing behavior and lower-level neural structures representing brain regions. We present results from single and multiple robot experiments developed using the NSL/ASL/MIRO system and Sony AIBO ERS-210 robots.

Keywords

Biorobotics Biologically inspired robotics Neural networks Schemas Behaviors Prey catching Predator avoidance Swarms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbib, M.A.: Levels of modeling of mechanisms of visually guided behavior. Behavior Brain Science 10, 407–465 (1987)CrossRefGoogle Scholar
  2. 2.
    Arbib, M.A.: The Metaphorical Brain 2. Wiley, New York (1989)zbMATHGoogle Scholar
  3. 3.
    Arbib, M.A.: Neural mechanisms of visuomotor coordination: the evolution of Rana computatrix. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)Google Scholar
  4. 4.
    Arbib, M.A.: Schema theory. In: Shapiro, S. (ed.) The Encyclopedia of Artificial Intelligence, vol. 2, pp. 1427–1443 (2nd edn). Wiley, New York (1992)Google Scholar
  5. 5.
    Arbib, M.A.: Schema theory. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 993–998 (2nd edn). MIT Press, Cambridge, MA (2002)Google Scholar
  6. 6.
    Arbib, M.A., Cobas, A.: Prey-catching and predator avoidance 1: maps and schemas. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)Google Scholar
  7. 7.
    Arkin, R.C.: Neuroscience in motion: the application of Schema Theory to mobile robotics. In: Ewert, J.P., Arbib, M.A. (eds.) Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots. Plenum, New York, pp. 649–672 (1989)Google Scholar
  8. 8.
    Arkin, R.C.: Behavioral based Robotics. MIT Press, Cambridge, MA (1998)Google Scholar
  9. 9.
    Arkin, R.C., Ali, K., Weitzenfeld, A., Cervantes-Perez, F.: Behavior models of the praying mantis as a basis for robotic behavior. In: Journal of Robotics and Autonomous Systems, vol. 32(1), pp. 39–60. Elsevier, New York (2000)Google Scholar
  10. 10.
    Balch, T.: Teambots 2.0, http://www.cs.cmu.edu/~trb/TeamBots/ (2000)
  11. 11.
    Balch, T., Arkin, R.C.: Motor schema-based formation control for multiagent teams. IEEE Trans. Robot. Autom. (1999)Google Scholar
  12. 12.
    Barrera, A., Weitzenfeld, A.: Bio-inspired model of robot adaptive learning and mapping. Proceedings IROS 2006—International Robots and Systems Conference, Beijing, China, Oct 9–13 (2006)Google Scholar
  13. 13.
    Bekey, G.: Autonomous Robots: From Biological Inspiration to Implementation and Control. MIT Press, Cambridge, MA (2005)Google Scholar
  14. 14.
    Betts, B.: The toad optic tectum as a recurrent on-center off-surround neuralnet with quenching threshold, ICNN, IEEE International Conference and Neural Networks, vol 2, pp. 47–54, July 24–27 (1988)Google Scholar
  15. 15.
    Cao, Y.U., Fukunaga, A.S., Kahn, A.B.: Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27, Kluwer Academic, Boston, MA (1997)Google Scholar
  16. 16.
    Cervantes-Perez, F., Franco, A., Velazquez, S., Lara, N.: A Schema Theoretic Approach to Study the ‘Chantitlaxia’ Behavior in the Praying Mantis, Proceeding of the First Workshop on Neural Architectures and Distributed AI: From Schema Assemblages to Neural Networks, USC, October 19–20 (1993)Google Scholar
  17. 17.
    Cervantes-Pérez, F., Guevara-Pozas, D., Herrera, A.: Modulation of prey-catching behavior in toads: data and modeling. In: Arbib, M.A., Ewert, J.P. (eds.) Visual structures and integrated functions. Springer Verlag Research Notes in Neural Computing, vol. 3, pp. 397–415 (1991)Google Scholar
  18. 18.
    Cervantes-Perez, F., Herrera, A., García, M.: Modulatory effects on prey-recognition in amphibia: a theoretical ‘experimental study’. In: Rudoman, P., Arbib, M.A., Cervantes-Perez, F., Romo, R. (eds.) Neuroscience: From Neural Networks to Artificial Intelligence. Springer Verlag Research Notes in Neural Computing, vol. 4, pp. 426–449 (1993)Google Scholar
  19. 19.
    Cervantes-Perez, F., Lara, R., Arbib, M.A.: A neural model of interactions subserving prey–predator discrimination and size preference in anuran amphibia. J. Theor. Biol. 113, 117–152 (1985)MathSciNetGoogle Scholar
  20. 20.
    Cobas, A., Arbib, M.A.: Prey-catching and predator avoidance 2: Modeling the medullary hemifield deficit. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)Google Scholar
  21. 21.
    Cobas, A., Arbib, M.A.: Prey-catching and Predator-avoidance in Frog and Toad: Defining the Schemas. J. Theor. Biol. 157, 271–304 (1992)CrossRefGoogle Scholar
  22. 22.
    Collett, T.: Picking a route: Do toads follow rules or make plans? In: Ewert, J.P., Capranica, R.R., Ingle, D.J. (eds.) Advances in Vertebrate Neuroethology, pp. 321–330 (1983)Google Scholar
  23. 23.
    Corbacho, F., Arbib, M.: Learning to detour. Adapt. Behav. 3(4), 419–468 (1995)CrossRefGoogle Scholar
  24. 24.
    Corbacho, F., Weitzenfeld, R. In: The Neural Simulation Language NSL, A System for Brain Modeling, pp. 189–206. MIT Press, Cambridge, MA (2002), JulyGoogle Scholar
  25. 25.
    Didday, R.L.: A model of visuomotor mechanisms in the frog optic tectum. Math. Biosci. 30, 169–180 (1976)CrossRefGoogle Scholar
  26. 26.
    Ewert, J.P.: Neuroethology: An Introduction to the Neurophysiological Fundamentals of Behavior. Springer Verlag, Berlin, Heidelberg, New York (1980)Google Scholar
  27. 27.
    Ewert, J.P.: Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas, H. (ed.) Comparative neurology of the optic tectum, pp. 247–416. Plenum, New York (1984)Google Scholar
  28. 28.
    Ewert, J.P.: Commands neurons and command systems. In: Arbib, M.A. (ed.) The handbook of brain theory and neural networks. The MIT Press, Cambridge, Mass (1995)Google Scholar
  29. 29.
    Ewert, J.P., Kehl, W.: Configural prey-selection by individual experience in toad Bufo-Bufo. J. Physiol. 126, 105–114 (1978)Google Scholar
  30. 30.
    Grüsser, O.J., Grüsser-Cornehls, U.: Neurophysiology of the anuran visual system. In: Llinás, R., Precht, W. (eds.) Frog Neurobiology, pp. 297–385. Springer Verlag, Berlin, Heidelberg, New York (1976)Google Scholar
  31. 31.
    Ingle, D.: Brain mechanisms of visual localization by frogs and toads. In: J.-P. Ewert, Capranica, R.R., Ingle, D.J. (eds.) Advances in Vertebrate Neuroethology, pp. 177–226 (1983)Google Scholar
  32. 32.
    Lara, R., Arbib, M.A.: A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Biol. Cybern. 51, 223–237 (1985)CrossRefGoogle Scholar
  33. 33.
    Mech, D.L.: The Wolf. The Ecology and Behaviour of Endangered Species. The Natural History Press (1970)Google Scholar
  34. 34.
  35. 35.
    Parker, L.: Current State of the Art in Distributed Autonomous Mobile Robotics, Proceedings International Symposium on Distributed Autonomous Robotic Systems, pp. 3–12. Knoxville, TN (2000)Google Scholar
  36. 36.
    Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model, ACM SIGGRAPH ‘87 Conference Proceedings, Anaheim, California (1978)Google Scholar
  37. 37.
    Scalia, F., Fite, K.V.: A retinotopic analysis of the central connections of the optic nerve in the frog. J. Comp. Neurol. 158, 455–478 (1974)CrossRefGoogle Scholar
  38. 38.
    Sgorbissa, A., Arkin, R.C.: Local Navigation Strategies for a Team of Robots. Robotica 21(5) pp. 461–473. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  39. 39.
    Steenstrup, M., Arbib, M.A., Manes, E.G.: Port automata and the algebra of concurrent processes. J. Computer Syst. Sci. 27(no. 1), 29–50, Aug (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Teeters, J.L., Arbib, M.A.: A model of the anuran retina relating interneurons to ganglion cell responses. Biol. Cybern. 64, 197–207 (1991)CrossRefGoogle Scholar
  41. 41.
    Vallesa, A., Weitzenfeld, A.: Multi-agent formations in a pack of wolves hunting model. Proceedings 1st Latin American Robotics Symposium, LARS 2004, Mexico City (2004)Google Scholar
  42. 42.
    Wang, D.: A neural model of synaptic plasticity underlying short-term and long-term habituation. Adapt. Behav. 2, 111–129 (1993)CrossRefGoogle Scholar
  43. 43.
    Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000)CrossRefGoogle Scholar
  44. 44.
    Weitzenfeld, A., ASL: Hierarchy, Composition, Heterogeneity, and Multi-Granularity in Concurrent Object-Oriented Programming. Proceedings of the Workshop on Neural Architectures and Distributed AI: From Schema Assemblages to Neural Networks, USC, October 19–20 (1993)Google Scholar
  45. 45.
    Weitzenfeld, A., Prey Approach and Predator Avoidance Single and Multiple Robot Videos, ftp://ftp.itam.mx/pub/alfredo/videos/PreyPred (2007)
  46. 46.
    Weitzenfeld, A.: From Schemas to Neural Networks: A Multi-level Modeling Approach to Biologically-Inspired Autonomous Robotic Systems, Journal of Robotics and Autonomous Systems, Elsevier (2007)Google Scholar
  47. 47.
    Weitzenfeld, A., Arbib, M., Alexander, A.: NSL—Neural Simulation Language: A System for Brain Modeling, MIT Press, Cambridge, MA (2002)Google Scholar
  48. 48.
    Weitzenfeld, A., Cervantes, F., Sigala, R.: NSL/ASL: Simulation of Neural based Visuomotor Systems. In Proc. of IJCNN 2001 International Joint Conference on Neural Networks, Washington DC, July 14–19 (2001)Google Scholar
  49. 49.
    Weitzenfeld, A., Gutierrez-Nolasco, S., Venkatasubramanian, N.: MIRO: An Embedded Distributed Architecture for Biologically inspired Mobile Robots, Proc ICAR-03, 11th International Conference on Advanced Robotics, June 30–July 3, Coimbra, Portugal (2003)Google Scholar
  50. 50.
    Weitzenfeld, A., Peguero, O., Gutiérrez, S., NSL/ASL: Distributed Simulation of Modular Neural Networks, MICAI 2000 Mexican International Conference on Artificial Intelligence, Acapulco, Mexico, April 14–18, LNAI 1793, Springer-Verlag (2000)Google Scholar
  51. 51.
    Weitzenfeld, A., Vallesa, A., Flores, H.: A Biologically-Inspired Wolf Pack Multiple Robot Hunting Model, Proc of Latin American Robotics Symposium LARS 2006, Santiago Chile, Oct 26–27, (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Computer Engineering DepartmentInstituto Tecnológico Autónomo de MéxicoMéxicoMexico

Personalised recommendations