Advertisement

Journal of Intelligent and Robotic Systems

, Volume 51, Issue 1, pp 65–88 | Cite as

A Class of OFT Controllers for Torque-Saturated Robot Manipulators: Lyapunov Stability and Experimental Evaluation

  • Javier Moreno-Valenzuela
  • Víctor Santibáñez
  • Ricardo Campa
Article

Abstract

The trajectory tracking of robot manipulators is addressed in this paper. Two important practical situations are considered: the fact that robot actuators have limited power, and that only position measurements are carried out. Let us notice that a few solutions for the torque-bounded OFT (output feedback tracking) control has been proposed. In this paper we contribute to this subject by presenting a class of OFT controllers for torque-constrained robots. The theory of singularly perturbed systems is crucial in the analysis of the closed-loop system trajectories. As a second contribution of this paper, we present a detailed experimental study of six control schemes, which were tested in a two degrees-of-freedom direct-drive robot, confirming the advantages of the proposed methodology.

Keywords

Tracking control Unmeasurable joint velocity Robot manipulator Lyapunov theory Direct-drive robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arteaga, M.A.: Robot control and parameter estimation with only joint position measurements. Automatica 39, 67–73 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, London (1996)zbMATHGoogle Scholar
  3. 3.
    Daly, J.M., Schwartz, H.M.: Experimental results for output feedback adaptive robot control. Robotica 24, 727–738 (2006)CrossRefGoogle Scholar
  4. 4.
    Dixon, W.E., de Queiroz, M.S., Dawson, D.M., Zhang, F.: Tracking control of robot manipulators with bounded torque inputs. In: Proc. of the IASTED International Conference on Robotics and Manufacturing, pp. 112–115. Banff, Canada, July (1998)Google Scholar
  5. 5.
    Dixon, W.E., de Queiroz, M.S., Zhang, F., Dawson, D.M.: Tacking control of robot manipulators with bounded torque input. Robotica 17, 121–129 (1999)CrossRefGoogle Scholar
  6. 6.
    Dixon, W.E., Zergeroglu, E., Dawson, D.M.: Global robust output feedback tracking control of robot manipulators. Robotica 22(4), 351–357 (2004)CrossRefGoogle Scholar
  7. 7.
    Dixon, W.E.: Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Automat. Contr. 52(3), 488–493 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003)zbMATHGoogle Scholar
  9. 9.
    Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhauser, Boston (2001)zbMATHGoogle Scholar
  10. 10.
    Kapila, V., Grigoriadis, K.M. (eds.): Actuator Saturation Control. Marcel Dekker, New York (2002)Google Scholar
  11. 11.
    Kelly, R., Santibáñez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, Berlin (2005)Google Scholar
  12. 12.
    Khalil, H.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  13. 13.
    Lee, K.W., Khalil, H.: Adaptive output feedback control of robot manipulators using high-gain observer. Int. J. Control 67(6), 869–886 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Loría, A., Ortega, R.: On tracking control of rigids and flexible joint robots. Appl. Math. Comput. Sci. 5(2), 329–341 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Loría, A., Nijmeijer, H.: Bounded output feedback tracking control of full actuated Euler–Lagrange systems. Syst. Control. Lett. 33, 151–161 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Meza, J.L., Santibáñez, V., Hernández, V.M: Saturated nonlinear PID global regulator for robot manipulators: passivity based analysis. In: Proc. of 16th IFAC World Congress, pp. 3–8. Prague, July (2005)Google Scholar
  17. 17.
    Melhem, K., Liu, Z., Loría, A.: A unified framework for dynamics and Lyapunov stability of holonomically constrained rigid bodies. Journal of Advanced Computational Intelligence and Intelligent Informatics 9, 387–394 (2005)Google Scholar
  18. 18.
    Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramirez, H.: Pasivity-Based Control of Euler–Lagrange Systems. Springer, London (1998)Google Scholar
  19. 19.
    Paden, B., Panja, R.: Globally asymptotically stable PD+ controller for robot manipulators. Int. J. Control 7(6), 1697–1712 (1988)CrossRefGoogle Scholar
  20. 20.
    Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15, 563–571 (1997)CrossRefGoogle Scholar
  21. 21.
    Reyes, F., Kelly, R.: Experimental evaluation of model-based controllers on a direct-drive robot arm. Mechatronics 11, 267–282 (2001)CrossRefGoogle Scholar
  22. 22.
    Santibáñez, V., Kelly, R.: Strict Lyapunov functions for control of robot manipulators. Automatica 33(4), 675–682 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Santibáñez, V., Kelly, R.: Global asymptotic stability of bounded output feedback tacking control for robot manipulators. In: 40th IEEE Conf. Decision and Control, pp. 1378–1379. Orlando, December (2001)Google Scholar
  24. 24.
    Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. Springer, London (2000)Google Scholar
  25. 25.
    Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103, 119–125 (1981)zbMATHCrossRefGoogle Scholar
  26. 26.
    Zavala-Río, A., Santibáñez V.: Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs. IEEE Trans. Control Syst. Technol. 14(5), 958–965 (2006)CrossRefGoogle Scholar
  27. 27.
    Zavala-Río, A., Santibáñez V.: A natural saturating extension of the PD-control-with-desired-gravity-compensation for robot manipulators with bounded inputs. IEEE Trans. Robot. Autom. 23(2), 386–391 (2007)Google Scholar
  28. 28.
    Zergeroglu, E., Dawson, D.M., de Queiroz, M.S., Krstić, M.: On global output feedback tracking control of robot manipulators. In: Proc. of the IEEE Conference on Decision and Control, pp. 5073–5078. Sydney, Australia (2000)Google Scholar
  29. 29.
    Zergeroglu, E., Dixon, W.E., Behal, A., Dawson: Adaptive set-point control of robotic manipulators with amplitude-limited control inputs. Robotica 18(2), 171–181 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Javier Moreno-Valenzuela
    • 1
  • Víctor Santibáñez
    • 2
  • Ricardo Campa
    • 2
  1. 1.Centro de Investigación y Desarrollo de Tecnología Digital del IPN, CITEDI-IPNTijuanaMexico
  2. 2.Instituto Tecnológico de La LagunaTorreónMexico

Personalised recommendations