Journal of Intelligent and Robotic Systems

, Volume 50, Issue 4, pp 375–397 | Cite as

Consistency of SLAM-EKF Algorithms for Indoor Environments

  • Diego Rodriguez-Losada
  • Fernando Matia
  • Luis Pedraza
  • Agustin Jimenez
  • Ramon Galan
Article

Abstract

The solution to the Simultaneous Localization And Mapping (SLAM) problem using an Extended Kalman Filter (EKF) is probably the most extended in the literature despite the recently reported inconsistency of its estimation. There has been an important lack of successful SLAM-EKF implementations for indoor environments that could build monolithic large maps with features conveying angular information. In this paper we analyze the source and factors of the SLAM-EKF inconsistency in indoor environments (where the landmarks contain angular information) and we review current existing approaches presenting novel solutions to this problem that let us build indoor large monolithic feature based maps.

Keywords

Mobile robots Simultaneous Localization And Mapping Extended Kalman Filter Consistency Linearization errors Indoor environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann (2002)Google Scholar
  2. 2.
    Elfes, A.: Sonar-based real-world mapping and navigation. IEEE J. Robot. Autom. 3(3), 249–265 (1987)CrossRefGoogle Scholar
  3. 3.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. AAAI National Conference on Artificial Intelligence. Edmonton, Canada (2002)Google Scholar
  4. 4.
    Thrun, S., Fox, D., Burgard, W.: A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn. 31, 29–53 (1998). Also in Auton. Robots 5, 253–271.MATHCrossRefGoogle Scholar
  5. 5.
    Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S.: Sonar-based mapping of large scale mobile robot environments using EM. Proceedings of the International Conference on Machine Learning (ICML’99). Bled, Slovenia (1999)Google Scholar
  6. 6.
    Gutmann, J.S., Konolige, K.: Incremental mapping of large cyclic environments. IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 318–325. Monterey, California, USA (2000)Google Scholar
  7. 7.
    Choset, H., Nagatani, K.: Topological Simultaneous Localization and Mapping (SLAM): Toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17(2) (2001)Google Scholar
  8. 8.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence 2. Elsevier, New York (1988)Google Scholar
  9. 9.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82, 34–45 (1960)Google Scholar
  10. 10.
    Dissanayake, G., Durrant-Whyte, H., Bailey, T.: A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem. IEEE International Conference on Robotics and Automation. Workshop W4: Mobile Robot Navigation and Mapping, pp. 1009–1014. San Francisco, USA (2000)Google Scholar
  11. 11.
    Leonard, J.J., Feder, H.J.S.: A computationally efficient method for large-scale concurrent mapping and localization. Ninth Int.Symposium on Robotics Research. Salt Lake City, Utah(1999)Google Scholar
  12. 12.
    Guivant, J., Nebot, E.: Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257 (2001)CrossRefGoogle Scholar
  13. 13.
    Tardos, J.D., Neira, J., Newman, P., Leonard, J.J.: Robust mapping and localization in indoor environment using sonar data. Int. J. Rob. Res. 21(4), 311–330 (2002)CrossRefGoogle Scholar
  14. 14.
    Williams, S.: Efficient solutions to autonomous mapping and navigation problems. PhD. Thesis. Australian Center for Field Robotics, University of Sidney (2001)Google Scholar
  15. 15.
    Knight, J., Davison, A., Reid, I.: Towards constant time SLAM using postponement. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 405–413. Hawaii, USA (2002)Google Scholar
  16. 16.
    Thrun, S., Liu, Y., Koller, D., Andrew, Y.N., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Rob. Res. 23(7), 693–716 (2004)CrossRefGoogle Scholar
  17. 17.
    Csorba, M.: Simultaneous localisation and map building. PhD. Thesis. Robotics Research Group Department of Engineering Science University of Oxford (1997)Google Scholar
  18. 18.
    Newman, P.: On the structure and solution of the simultaneous localisation and map building problem. PhD. Thesis. Australian Center for Field Robotics, University of Sidney (1999)Google Scholar
  19. 19.
    Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localisation and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)CrossRefGoogle Scholar
  20. 20.
    Julier, S., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. IEEE Int. Conference on Robotics and Automation, vol. 4, pp. 4238–4243. Seoul, Korea (2001)Google Scholar
  21. 21.
    Castellanos, J.A., Neira, J., Tardos, J.D.: Limits to the consistency of EKF-based SLAM. Fifth IFAC Symposium on Intelligent Autonomous Vehicles IAV’04. Lisbon, Portugal (2004)Google Scholar
  22. 22.
    Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM Algorithm. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, pp. 3562–3568 (2006)Google Scholar
  23. 23.
    Martinez-Cantin, R., Castellanos, J.A.: Bounding Uncertainty in EKF-SLAM: The Robocentric Local Approach. In IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 430–435 (2006)Google Scholar
  24. 24.
    Huang, Shoudong, Dissanayake, G.: Convergence analysis for extended Kalman filter based SLAM. In IEEE International Conference on Robotics and Automation (ICRA’06), pp. 412–417 (2006)Google Scholar
  25. 25.
    Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R., Lacey, G.: Implementing Map Based Navigation in Guido, The Robotic SmartWalker. IEEE ICRA ’05, pp. 3401–3406. Barcelona, SpainGoogle Scholar
  26. 26.
    Rodriguez-Losada, D., Matia, F., Galan, R.: Building geometric feature based maps for indoor service robots. Elsevier: Robot. Auton. Syst. 54(7), 546–558 (2006) (31 July)CrossRefGoogle Scholar
  27. 27.
    Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R.: Consistency Improvement for SLAM – EKF for Indoor Environments. Robotics and Automation, 2006 Proceedings 2006 IEEE International Conference on. ICRA’06, pp. 418–423 (2006)Google Scholar
  28. 28.
    Ayache, N., Faugeras, O.D.: Maintaining representations of the environment of a mobile robot. IEEE Trans. Robot. Autom. 5(6) (1989)Google Scholar
  29. 29.
    Castellanos, J.A., Montiel, J.M.M., Neira, J., Tardos, J.D.: The SPmap: A probabilistic framework for simultaneous localization and map building. IEEE Trans. Robot. Autom. 15(5), 948–953 (1999)CrossRefGoogle Scholar
  30. 30.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Trackking and Navigation. Wiley InterScience (2001)Google Scholar
  31. 31.
    Newman, P., Leonard, J., Tardos, J.D., Neira, J.: Explore and Return: Experimental Validation of Real-time Concurrent Mapping and Localization. IEEE ICRA’02, pp. 1802–1809. Washington DC, USA (2002)Google Scholar
  32. 32.
    Neira, J., Tardos, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)CrossRefGoogle Scholar
  33. 33.
    Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R.: Local map fusion for real-time indoor simultaneous localization and mapping. Journal of Field Robotics 23(5), 291–309 (2006) (May, Wiley Interscience)CrossRefGoogle Scholar
  34. 34.
    Castellanos, J.A., Martinez-Cantin, R., Tardós, J.D., Neira, J.: Robocentric map joining: Improving the consistency of EKF-SLAM. Robot. Auton. Syst. 55, 21–29 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Diego Rodriguez-Losada
    • 1
  • Fernando Matia
    • 1
  • Luis Pedraza
    • 1
  • Agustin Jimenez
    • 1
  • Ramon Galan
    • 1
  1. 1.Intelligent Control GroupUniversidad Politecnica de Madrid, UPMMadridSpain

Personalised recommendations