Journal of Intelligent and Robotic Systems

, Volume 49, Issue 3, pp 279–292 | Cite as

Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study

  • Sašo BlažičEmail author
  • Igor Škrjanc


In the paper a fuzzy model based predictive control algorithm is presented. The proposed algorithm is developed in the state space and is given in analytical form, which is an advantage in comparison with optimisation based control schemes. Fuzzy model-based predictive control is potentially interesting in the case of batch reactors, heat-exchangers, furnaces and all the processes with strong nonlinear dynamics and high transport delays. In our case it is implemented to a continuous stirred-tank simulated reactor and compared to optimal PI control. Some stability and design issues of fuzzy model-based predictive control are also given.


fuzzy identification predictive control stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abonyi, J., Nagy, L., Szeifert, F.: Fuzzy model-based predictive control by instantaneous linearization. Fuzzy Sets Syst. 120(1), 109–122 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andone, D., Hossu, A.: Predictive control based on fuzzy model for steam generator. In: Proceedings ot the IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1245–1250 (2004)Google Scholar
  3. 3.
    Bequette, B.W.: Nonlinear control of chemical processes: a review. Ind. Eng. Chem. Res. 30, 1391–1413 (1991)CrossRefGoogle Scholar
  4. 4.
    Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control – parts 1 and 2. Automatica 24, 137–160 (1987)CrossRefGoogle Scholar
  5. 5.
    Cutler, C.R., Ramaker, B.L.: Dynamic Matrix Control – A Computer Control Algorithm. ACC, San Francisco (1980)Google Scholar
  6. 6.
    De Keyser, R.m.C, Van de Valde, P.G.A., Dumortier, F.A.G.: A Comparative study of self-adaptive long-range predictive control methods. Automatica 24(2), 149–163 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Doyle, F.J., Ogunnaike, T.A., Pearson, R.K.: Nonlinear model-based control using second-order volterra models. Automatica 31, 697–714 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Figueroa, J.L.: Piecewise linear models in model predictive control. Lat. Am. Appl. Res. 31(4), 309–315 (2001)Google Scholar
  9. 9.
    Goldberg, R.R.: Methods of Real Analysis. Wiley, New York (1976)zbMATHGoogle Scholar
  10. 10.
    Henson, M.A., Seborg, D.E.: Input–output linerization of general processes. AIChE J. 36, 1753 (1990)CrossRefGoogle Scholar
  11. 11.
    Henson, M.A.: Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 23, 187–202 (1998)CrossRefGoogle Scholar
  12. 12.
    Kim, J.-H., Huh, U.-Y.: Fuzzy model based predictive control. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 1, pp. 405–409 (1998)Google Scholar
  13. 13.
    Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)zbMATHCrossRefGoogle Scholar
  14. 14.
    Leith, D.J., Leithead, W.E.: Gain-scheduled and nonlinear systems: dynamics analysis by velocity-based linearization families. Int. J. Control 70(2), 289–317 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Leith, D.J., Leithead, W.E.: Analyitical framework for blended model systems using local linear models. Int. J. Control 72(7–8), 605–619 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, N., Li, S., Xi, Y.: Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Inf. Sci. Inf. Comput. Sci. 165(3–4), 247–263 (2004)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Lin, C.-H.: Siso nonlinear system identification using a fuzzy-neural hybrid system. Int. J. Neural Syst. 8(3), 325–337 (1997)CrossRefGoogle Scholar
  18. 18.
    Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Upper Saddle River, NJ (1999)Google Scholar
  19. 19.
    Morningred, J.D., Paden, B.E., Mellichamp, D.A.: An adaptive nonlinear predictive controller. Chem. Eng. Sci. 47, 755–762 (1992)CrossRefGoogle Scholar
  20. 20.
    Padin, M.S., Figueroa, J.L.: Use of CPWL approximations in the design of a numerical nonlinear regulator. IEEE Trans. Automat. Contr. 45(6), 1175–1180 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Richalet J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: applications to industrial processes. Automatica 14, 413–428 (1978)CrossRefGoogle Scholar
  22. 22.
    Richalet, J.: Industrial application of model based predictive control. Automatica 29(5), 1251–1274, (1993)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Roubos, J.A., Mollov, S., Babuska, R., Verbruggen, H.B.: Fuzzy model-based predictive control using Takagi–Sugeno models. Int. J. Approx. Reason. 22(1–2), 3–30 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sun, H.-R., Han, P., Jiao, S.-M.: A predictive control strategy based on fuzzy system. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 549–552 (2004)Google Scholar
  25. 25.
    Škrjanc, I., Matko, D.: Predictive functional control based on fuzzy model for heat-exchanger pilot plant. IEEE Trans. Fuzzy Syst. 8(6), 705–712 (2000)CrossRefGoogle Scholar
  26. 26.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)zbMATHGoogle Scholar
  27. 27.
    Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)CrossRefGoogle Scholar
  28. 28.
    Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  29. 29.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  30. 30.
    Ydstie, B.E.: Extended Horizon Adaptive Control. IFAC World Congress, Budapest (1985)Google Scholar
  31. 31.
    Ying, H.G.: Necessary conditions for some typical fuzzy systems as universal approximators. Automatica 33, 1333–1338 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations