General Solution for the Dynamic Modeling of Parallel Robots

  • Wisama Khalil
  • Ouarda Ibrahim


In this paper, we present a general method to calculate the inverse and direct dynamic models of parallel robots. The models are expressed in a closed form by a single equation in which all the elements needed are expressed. The solution is given in terms of the dynamic models of the legs, the dynamics of the platform and some Jacobian matrices. The proposed method is applied in this paper on two parallel robots with different structures.


Complex structures Dynamic modeling Jacobian matrix Parallel robots Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ait-Ahmed, M.: Contribution à la modélisation géométrique et dynamique des robots parallèles. PhD thesis, LAAS, Toulouse (1993)Google Scholar
  2. 2.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, Berlin Heidelberg New York (2002)Google Scholar
  3. 3.
    Bhattacharya, S., Hatwal, H., Ghosh, A.: An on-line estimation scheme for generalized Stewart platform type parallel manipulators. J. Mechanism and Machine Theory 32(1), 79–89 (January 1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bhattacharya, S., Nenchev, D.N., Uchiyama, M.: A recursive formula for the inverse of the inertia matrix of a parallel manipulator. J. Mechanism and Machine Theory 33(7), 957–964 (October 1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Beji, L.: Modélisation, identification et commande d’un robot parallèle. PhD thesis, Université d’Evry Val d’Essonne (1997)Google Scholar
  6. 6.
    Codourey, A., Burdet, E.: A body oriented method for finding a linear form of the dynamic equatiojns of fully parallel robot. IEEE Conf. on Robotics and Automation, pp. 1612–1619. Albuquerque, New Mexico, U.S. (1997)Google Scholar
  7. 7.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison Wesley, Reading, USA (1986)Google Scholar
  8. 8.
    Dafaoui, El-M., Amirat, Y., Pontnau, J., François, C.: Analysis and design of a six-DOF parallel manipulator, modeling, singular configurations, and workspace. IEEE Trans. Robot. Autom. 14(1), 78–92 (February 1998)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, B., Mruthyunjaya, T.S.: Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach. J. Mechanism and Machine Theory 33(7), 993–1012 (October 1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. J. Mechanism and Machine Theory 33(8), 1135–1152 (November 1998)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dasgupta, B., Choudhury, P.: A general strategy based on the Newton–Euler approach for the dynamic formulation of parallel manipulators. J. Mechanism and Machine Theory 34(6), 801–824 (August 1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Rob. Res. 2(3), 87–101 (1983)Google Scholar
  13. 13.
    Fichter, E.F.: A Stewart platform based manipulator: General theory and practical construction. Int. J. Rob. Res. 5(2), 157–181 (October 1986)CrossRefGoogle Scholar
  14. 14.
    Geng, Z., Haynes, S., Lee, J.D., Carrol, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9, 237–254 (1992)CrossRefGoogle Scholar
  15. 15.
    Gosselin, C.M.: Parallel computationnal algorithms for the kinematics and dynamics of parallel manipulators. IEEE Int. Conf. Robot. Autom. 1, 883–889 (1993) New YorkGoogle Scholar
  16. 16.
    Gugliemetti, P., Longchamp, R.: A closed form inverse dynamic model of the delta parallel robot. In: 4th IFAC Symp. on Robot Control, Syroco, pp. 51–56, Capri, 19–21 (September 1994)Google Scholar
  17. 17.
    Hoffman, R., Hoffman, M.: Vibrational modes of an aircraft simulator motion system. In: Proc. 5th World Congress on Theory of Machines and Mechanisms, pp. 603–606. Montreal (July 1979)Google Scholar
  18. 18.
    Hollerbach, J.M.: An iterative lagrangian formulation of manipulators dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ji, Z.: Study of the effect of leg inertia in Stewart platform. In: IEEE Int. Conf. on Robotics and Automation, pp. 121–126. Atlanta (May 1993)Google Scholar
  20. 20.
    Khalil, W., Kleinfinger, J.-F.: A new geometric notation for open and closed-loop robots. Proc. IEEE Conf. on Robotics and Automation, pp. 1174–1180. San Francisco (April 1986)Google Scholar
  21. 21.
    Khalil, W., Kleinfinger, J.-F.: Minimum operations and minimum parameters of the dynamic model of tree structure robots. IEEE J. Robot. Autom. RA-3(6), 517–526 (December 1987)Google Scholar
  22. 22.
    Khalil, W., Creusot, D.: SYMORO+: A system for the symbolic modelling of robots. Robotica 15, 153–161 (1997)CrossRefGoogle Scholar
  23. 23.
    Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough–Stewart robots. IEEE Trans. Robot. Autom. 20(4), 754–762 (August 2004)Google Scholar
  24. 24.
    Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Penton, London-Paris (2002)Google Scholar
  25. 25.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Autom. RA-3(1), 43–53 (February 1987)CrossRefGoogle Scholar
  26. 26.
    Khosla, P.K.: Real-time control and identification of direct drive manipulators. PhD Thesis, Carnegie Mellon University, Pittsburgh, USA (1986)Google Scholar
  27. 27.
    Kleinfinger, J.-F., Khalil, W.: Dynamic modelling of closed-chain robots, 16th Int Symp on Industrial Robots, pp. 401–412. Bruxelles (1986)Google Scholar
  28. 28.
    Lebret, G., Liu, G.K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst. 10(5), 629–655 (July 1993)zbMATHGoogle Scholar
  29. 29.
    Lee, K.M., Shah, D.K.: Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE J. Robot. Autom. 4(3), 361–368 (June 1988)CrossRefGoogle Scholar
  30. 30.
    Lilly, K.W., Orin, D.E.: Efficient O(N) computation of the operational space inertia matrix. Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1014–1019. Cincinnati, USA (May 1990)Google Scholar
  31. 31.
    Liu, M.-J., Li, C.-X., Li, C.-N.: Dynamics analysis of the Gough–Stewart platform manipulator. IEEE Trans. Robot. Autom. 16(1), 94–98 (February 2000)CrossRefGoogle Scholar
  32. 32.
    Luh, J.Y.S., Walker, M.W., Paul, R.C.P.: On-line computational scheme for mechanical manipulators. Trans. of ASME, J. Dyn. Syst. Meas. Control 102(2), 69–76 (1980)MathSciNetGoogle Scholar
  33. 33.
    Luh J.Y.S., and Zheng, J. F.: Computation of Input generalized Forces for Robots with Closed Kinematic Chain mechanisms, IEEE Trans. Robot. Autom. RA-12, 95–103 (1985).Google Scholar
  34. 34.
    Merlet, J.-P.: Parallel Robots. Kluwer, Dordrecht, The Netherland (2000)zbMATHGoogle Scholar
  35. 35.
    Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Rob. Res. 23(2), 127–140 (February 2004)CrossRefGoogle Scholar
  36. 36.
    Nakamura, Y., Ghodoussi, M.: A computational scheme of closed link robot dynamics derived by d’Alembert Principle. Int. Conf. on robotics and automation, IEEE, pp. 1354–1360. Philadelphia (1988)Google Scholar
  37. 37.
    Ploen, S.R., Park, F.C.: Coordinate-invariant algorithms for robot dynamics. IEEE Trans. Robot. Autom. 15(6), 1130–1135 (December 1999)CrossRefGoogle Scholar
  38. 38.
    Reboulet, C., Berthomieu, T.: Dynamic models of a six degree of freedom parallel manipulators, ICAR, pp. 1153–1157. Pise (June 1991)Google Scholar
  39. 39.
    Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York (1994)Google Scholar
  40. 40.
    Sugimoto, K.: Computational scheme for dynamic analysis of parallel manipulators. Transaction of the ASME, J. Mech. Transm. Autom. Des. 111, 29–33 (1989)Google Scholar
  41. 41.
    Tsai, L.-W.: Solving the inverse dynamics of a Stewart–Gough manipulator by the principle of virtual work. J. Mech. Des. 122, 3–9 (March 2000)CrossRefGoogle Scholar
  42. 42.
    Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotics mechanism. Trans. of ASME, J. Dyn. Syst. Meas. Control 104, 205–211 (1982)zbMATHGoogle Scholar
  43. 43.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. BG, Teubner (1977)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.IRCCyN, U.M.R 6597 C.N.R.S, Ecole Centrale de NantesNantes Cedex 03France

Personalised recommendations