Advertisement

Journal of Intelligent and Robotic Systems

, Volume 49, Issue 2, pp 171–187 | Cite as

Remote Visual Servoing of a Robot Manipulator via Internet2

  • Carmen Monroy
  • Rafael Kelly
  • Marco Arteaga
  • Eusebio Bugarin
Article

Abstract

Visual servoing is a powerful approach to enlarge the applications of robotic systems by incorporating visual information into the control system. On the other hand, teleoperation – the use of machines in a remote way – is increasing the number of applications in many domains. This paper presents a remote visual servoing system using only partial camera calibration and exploiting the high bandwidth of Internet2 to stream video information. The underlying control scheme is based on the image-based philosophy for direct visual servoing – computing the applied torque inputs to the robot based in error signals defined in the image plane – and evoking a velocity field strategy for guidance. The novelty of this paper is a remote visual servoing with the following features: (1) full camera calibration is unnecessary, (2) direct visual servoing does not neglect the robot nonlinear dynamics, and (3) the novel velocity field control approach is utilized. Experiments carried out between two laboratories demonstrated the effectiveness of the application.

Keywords

Visual servoing Velocity field Vision systems Teleoperation Internet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alex, J., Vikramaditya, B., Nelson, B.J.: A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes. In: Proceedings of the 1998 ASME Design Engineering Technical Conference, Atlanta, GA, (September 1998)Google Scholar
  2. 2.
    Campa, R., Kelly, R., Santibañez, V.: Windows-based real-time control of direct-drive mechanism: platform description and experiments. Mechatronics 14, 1021–1036 (2004)Google Scholar
  3. 3.
    Elhajj, I., Xi. N., Fung, W.K., Liu, Y.H., Hasegawa, Y., Fukuda, T.: Supermedia-enhanced Internet-based telerobotics. In: Proceedings of the IEEE, vol. 91, no. 3, pp. 396–421 (March 2003)Google Scholar
  4. 4.
    Fitzpatrick, T.: Live remote control of a robot via the Internet. IEEE Robot. Autom. Mag. 6(3), 7–8 (September 1999)CrossRefGoogle Scholar
  5. 5.
    Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Arena Sanchez, M.A., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot. 21(1), 67–79 (February 2005)CrossRefGoogle Scholar
  6. 6.
    Goldenberg, K., Gentner, S., Sutter, C., Wiegley, J.: The mercury project: A feasibility study for Internet robots. IEEE Robot. Autom. Mag. 7(1), 35–40 (March 2000)CrossRefGoogle Scholar
  7. 7.
    Hou, C., Jia, S., Takase, K.: Real-time multimedia applications in the web-based robotic telecare system. J. Intell. Robot. Syst. 38, 135–153 (2003)CrossRefGoogle Scholar
  8. 8.
    Hu, H., Yu, L., Tsui, P.W., Zhou, Q.: Internet-based robotic systems for teleoperation. Int. J. Assembly Autom. 21(2), 1–10 (2001)zbMATHGoogle Scholar
  9. 9.
    Hutchinson, S., Hager, G.D., Corke, P.: A tutorial on visual servoing. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)CrossRefGoogle Scholar
  10. 10.
    Jia, S., Takase, K.: Internet-based robotic system using CORBA as communication architecture. J. Intell. Robot. Syst. 34, 121–134 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kelly, R.: Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Robot. Autom. 12, 759–766 (October 1996)CrossRefGoogle Scholar
  12. 12.
    Kelly, R., Moreno, J., Campa, R.: Visual servoing of planar robots via velocity fields. In: Proceedings of the 43rd IEEE Conference on Decision and control, Paradise Island, Bahamas, pp. 4028–4033 (December 2004)Google Scholar
  13. 13.
    Kelly, R., Santibañez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, Berlin Heidelberg New York (2005)Google Scholar
  14. 14.
    Koditschek, D.: Natural motion for robot arms. In: Proceedings 23rd IEEE Conference on Decision and Control, Las Vegas, NV, pp. 733–735 (1984)Google Scholar
  15. 15.
    Li, P., Horowitz, R.: Passive velocity field control of mechanical manipulators. IEEE Trans. Robot. Autom. 15, 751–763 (1999)CrossRefGoogle Scholar
  16. 16.
    Luo, R.C., Chen, T.M.: Development of a multibehavior-based mobile robot for remote supervisory control through the Internet. IEEE/ASME Trans. Mechatronics 5(4), 376–385 (December 2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Luo, R.C., Su, K.L., Shen S.H., Tsai, K.H.: Networked intelligent robots through the Internet: issues and opportunities. In: Proceedings of the IEEE, vol. 91, no. 3, pp. 371–382 (2003)Google Scholar
  18. 18.
    Marin, R., Sanz, P.J., Nebot, P., Esteller, R.: Multirobot Internet-based architecture for telemanipulation: experimental validation. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, D.C., pp. 3565–3570 (2003)Google Scholar
  19. 19.
    Marin, R., Wirz, R., Sans, P.J., Tirado, A.: Learning visual servoing techniques by remotely programming an Internet tele-lab: an education and training experience, Formatex (2005)Google Scholar
  20. 20.
    Moreno, J., Kelly, R.: On manipulator control via velocity fields. In: Proceedings of the 15th IFAC World Congress, Barcelona, Spain (July 2002)Google Scholar
  21. 21.
    Moreno, J., Kelly, R.: Velocity control of robot manipulators: analysis and experiments. Int. J. Control 76(14), 1420–1427 (September 2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nunes, J.: The eyes have it. Rob. World 23(4), 4–8 (May (2005)Google Scholar
  23. 23.
    Parvin, B., Taylor, J.R., Callahan, D.E., Johnston, W.E., Dahmen, U.: Visual servoing for online facilities. IEEE Comput. 30(7), (July 1997)Google Scholar
  24. 24.
    Oboe, R., Fiorini, P.: A design and control environment for Internet-based telerobotics. Int. J. Rob. Res. 17(4), 433–449 (April 1998)CrossRefGoogle Scholar
  25. 25.
    Reynaga, G.: Sistema de vision en tiempo real para control de robots. M. Sc. Thesis, CICESE, Mexico, (August 2004)Google Scholar
  26. 26.
    Rogers, J., Christensen, K.J.: A fluid-flow characterization of Internet1 and Internet2 traffic. In: Proceedings 14–16, Tampa, FL., pp. 509–513 (November 2001)Google Scholar
  27. 27.
    Safaric, R., Debevc, M., Parkin, R.M., Uran, S.: Telerobotics experiments via Internet. IEEE Trans. Ind. Electron. 48(2), 424–431 (April 2001)CrossRefGoogle Scholar
  28. 28.
    Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators, 2nd ed. Springer, Berlin Heidelberg New York (2000)Google Scholar
  29. 29.
    Sharma, R., Sutanto, H.: A framework for robot motion planning with sensor constraints. IEEE Trans. Robot. Autom. 13, 61–73 (1997)CrossRefGoogle Scholar
  30. 30.
    Spencer, R.: Vision-guided robots can save time and money. Rob. World 21(2), 14–15 (September 2003)Google Scholar
  31. 31.
    Stone A.: Internet2’s breakthroughs for academic research. IEEE Distrib. Syst. Online 5(1), 1–5 (January 2004)CrossRefGoogle Scholar
  32. 32.
    Taylor, K., Dalton, B., Trevelyan, J.: Web-based telerobotics. Robotica 17, 49–57 (January–February 1999)CrossRefGoogle Scholar
  33. 33.
    Taylor, K., Dalton, B.: Internet robots: a new robotics niche. IEEE Robot. Autom. Mag. 7(1), 27–34 (March 2000)CrossRefGoogle Scholar
  34. 34.
    Terrazas, A., Ostuni, J., Barlow, M.: Java Media APIS: Cross-platform Imaging, Media, and Visualization. Sams, Indiana (2002)Google Scholar
  35. 35.
    Yeung, F.: Internet 2 scaling up the backbone for R&D. IEEE Internet Computing 1(2), 36–37 (March–April 1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Carmen Monroy
    • 1
  • Rafael Kelly
    • 2
  • Marco Arteaga
    • 3
  • Eusebio Bugarin
    • 2
  1. 1.Instituto Tecnológico de la LagunaCoahuilaMexico
  2. 2.CICESEEnsenada, B. C.Mexico
  3. 3.Sección de EléctricaDEPFI–UNAMMéxico, D.F.Mexico

Personalised recommendations