Journal of Intelligent and Robotic Systems

, Volume 42, Issue 3, pp 295–316 | Cite as

Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System



This paper presents the design of a novel fuzzy sliding-mode control (NFSMC) for the magnetic ball levitation system. At first, we examine the nonlinear dynamic models of the magnetic ball system, where the singular perturbation method is used. Next, we address the design schemes of sliding mode control (SMC) and traditional fuzzy sliding-mode control (FSMC), where two kinds of FSMCs are introduced. Then we provide the design steps of the NFSMC, where the Lyapunov stability analysis is also given. Finally, a magnetic ball levitation system is used to illustrate the effectiveness of the proposed controller.


novel fuzzy sliding-mode control singular perturbation magnetic levitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baily, E. and Arapostathis, A.: Simple sliding mode condition scheme applied to robot manipulator, Internat. J. Control. 45 (1987), 1197–1209. Google Scholar
  2. 2.
    Chen, T.-T. and Li, T.-H. S.: Integrated fuzzy GA-based simplex sliding-mode control, Internat. J. Fuzzy Systems 2(4) (2000), 267–277. Google Scholar
  3. 3.
    Cheng, D. K.: Field and Wave Electromagnetics, Addison-Wesley, New York, 1989, pp. 289–292. Google Scholar
  4. 4.
    Cho, D., Kato, Y., and Spilman, D.: Sliding mode and classical controllers in magnetic levitation system, IEEE Control Systems Mag. 13(1) (1993), 42–45. Google Scholar
  5. 5.
    Decarlo, R. A., Zak, S. H., and Matthews, G. P.: Variable structure control of nonlinear multivariable system: a Tutorial, Proc. IEEE 76(3) (1988), 212–232. Google Scholar
  6. 6.
    EL-Ghezawi, M. E., Zinober, A. S. I., and Billings, S. A.: Analysis and design of variable structure systems using a geometric approach, Internat. J. Control 39 (1983), 657–671. Google Scholar
  7. 7.
    Filippov, A. F.: Differential Equation with Discontinuous Right Sides, Kluwer Academic Publishers, Dordercht, 1988. Google Scholar
  8. 8.
    Furuta, K.: Sliding mode control for discrete system, Systems Control Letters (1990), 145–152. Google Scholar
  9. 9.
    Goodyer, M. J., Henderson, R. I., and Judd, M.: The measurement of Magnus force and moment using a magnetically suspended wind tunnel model, IEEE Trans. Magnetics 11(5) (1975), 1514–1516. Google Scholar
  10. 10.
    Gupta, M. M. and Yamakawa, T.: Fuzzy Computing Theory, Hardware and Applications, Netherlands, 1991. Google Scholar
  11. 11.
    Hajjaji, E. H. and Ouladsine, M.: Modeling and nonlinear control of magnetic levitation system, IEEE Trans. Indust. Electr. 48 (2001), 831–838. Google Scholar
  12. 12.
    Hung, J. Y.: Magnetic bearing control using fuzzy logic, IEEE Trans. Industry Appl. 31(6) (1995), 1492–1497. Google Scholar
  13. 13.
    Hung, J. Y., Gao, W., and Hung, J. C.: Variable structure control: A survey, IEEE Trans. Industrial Electronics 40 (1993), 2–22. Google Scholar
  14. 14.
    Hirota, K.: Industrial Applications of Fuzzy Technology, South Sea Int. Pre., 1993. Google Scholar
  15. 15.
    Kilgore, W. A.: Comparison of digital controllers used in magnetic suspension and balance systems, NASA Contractor Report 182087, 1990. Google Scholar
  16. 16.
    Kim, S. W. and Lee, J. J.: Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets Systems 7 (1995), 359–367. Google Scholar
  17. 17.
    Kokotovic, P. V., Khalil, H. K., and O’Reilly, J.: Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1986. Google Scholar
  18. 18.
    Kuo, B. C.: Automatic Control Systems, 6th edn, Prentice-Hall, Englewood Cliffs, NJ, 1991. Google Scholar
  19. 19.
    Li, J.-H. and Li, T.-H. S.: Multiloop control of thyristor-driven magnetic levitation system, Mechatronics 5(5) (1995), 469–481. Google Scholar
  20. 20.
    Li, J.-H., Li, T.-H. S., and Ou, T.-H.: Design and implementation of fuzzy sliding-mode controller for a wedge balancing system, J. Intelligent Robotic Systems (2003), to appear. Google Scholar
  21. 21.
    Li, T.-H. S. and Sun, Y.-Y.: One model matching control to unmodeled high frequency dynamics, in: Proc. of 1989 ACC, Pittsburgh, 1989, pp. 1301–1303. Google Scholar
  22. 22.
    Li, T.-H. S. and Shieh, M.-Y.: Switching-type fuzzy sliding mode control of a cart-pole system, Mechatronics 10(1/2) (2000), 91–109. Google Scholar
  23. 23.
    Li, T.-H. S. and Chiou, J.-S.: A new D-stability criterion of multiparameter singularly perturbed discrete systems, IEEE Trans. Circuits Systems I 49(8) (2002), 1226–1230. Google Scholar
  24. 24.
    Lin, C. E. and Jou, H. L.: Force model identification for magnetic suspension system via magnetic field measurement, IEEE Trans. Instrument Measurement 42 (1993), 767–771. Google Scholar
  25. 25.
    Lin, C. E. and Sheu, Y.-R.: A hybrid control approach for large-gap magnetic suspension system, J. Control Systems Technol. 2(1) (1994), 1–9. Google Scholar
  26. 26.
    Lin, C.-M. and Shiu, J.-F.: Adaptive fuzzy sliding-mode control for motor-toggle servomechanism, in: IEEE Internat. Conf. on Control Applications, Anchorage, AK, U.S.A., 2000, pp. 25–27. Google Scholar
  27. 27.
    Lin, L.-C. and Gau, T.-B.: Feedback linearization and fuzzy control for conical magnetic bearings, IEEE Trans. Control Systems Technol. 5(4) (1997), 471–426. Google Scholar
  28. 28.
    Lu, Y.-S. and Chen, J.-S.: A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems, IEEE Trans. Indust. Electronics 41(5) (1994), 492–552. Google Scholar
  29. 29.
    O’Reilly, J.: Robustness of linear feedback control systems to unmodeled high-frequency dynamics, Internat. J. Control 44 (1986), 1077–1088. Google Scholar
  30. 30.
    Palm, R.: Sliding mode fuzzy control, IEEE Internat. Conf. Fuzzy Systems, San Diego, CA, 1992, pp. 519–526. Google Scholar
  31. 31.
    Palm, R.: Robust control by fuzzy sliding mode, Automatica 30 (1994), 1429–1437. Google Scholar
  32. 32.
    Park, K. H., Ahn, K. Y., Kim, S. H., and Kwak, Y. K.: Wafer distribution system for a clean room using a novel magnetic suspension technique, IEEE/ASME Trans. Mechatronics 3(1) (1998), 73–78. Google Scholar
  33. 33.
    Regatos, G. G., Tzafestas, C. S., and Tzafestas, S. G.: Mobile robotic motion control in partially unknown environments using a sliding-mode fuzzy-logic control, Robotics Autonom. Systems 33 (2000), 1–11. Google Scholar
  34. 34.
    Škrjanc, I. and Matko, D.: Fuzzy predictive functional control in the state space domain, J. Intelligent Robotic Systems 31 (2001), 289–297. Google Scholar
  35. 35.
    Suytino, J., Kobayashi, F. H., and Dote, Y.: Variable-structured robust controller by fuzzy logic for servomotors, IEEE Trans. Indust. Electr. 40 (1993), 80–88. Google Scholar
  36. 36.
    Temeltas, H.: A fuzzy sliding mode controller for induction motor position control, in: Proc. of IEEE ISIE ‘98, Vol. 1, 1998, pp. 110–115. Google Scholar
  37. 37.
    Tzafestas, S. G. and Regatos, G. G.: Design and stability analysis of a new sliding-mode fuzzy logic controller of reduced complexity, March. Intelligence Robotic Control 1(1) (1999), 27–41. Google Scholar
  38. 38.
    Tzafestas, S. G. and Regatos, G. G.: A simple robust sliding-mode fuzzy-logic controller of the diagonal type, J. Intelligent Robotic Systems 26(3/4) (1999), 353–388. Google Scholar
  39. 39.
    Utkin, V. I.: Sliding Modes and Their Application in Variable Structure Systems, MIR Publishers, Moscow, 1978. Google Scholar
  40. 40.
    Utkin, V. I.: Variable structure systems with sliding modes, IEEE Trans. Automat. Control 22 (1979), 212–222. Google Scholar
  41. 41.
    Utkin, V. I., Guldner, J., and Shi, J.: Sliding Mode Control in Electromechanical System, Taylor & Francis, London, 1999. Google Scholar
  42. 42.
    Wong, T. H.: Design of a magnetic levitation control system an undergraduate project, IEEE Trans. Education 29 (1986), 196–200. Google Scholar
  43. 43.
    Yamamura, S. and Yamaguchi, H.: Electromagnetic levitation system by means of salient-pole type magnets coupled with laminated slotless rails, IEEE Trans. Vehicular Technol. 39(1) (1990), 83–87. Google Scholar
  44. 44.
    Zadeh, L. A.: Outline of a new approach to analysis of complex system and decision process, IEEE Trans. Systems Man Cybernet. 3(1) (1973), 28–44. Google Scholar
  45. 45.
    Zadeh, L. A.: Fuzzy logic, IEEE Computer 21(4) (1988), 83–93. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.IC2S Laboratory, Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan, R.O.C.

Personalised recommendations