Advertisement

Materials informatics

  • Seeram Ramakrishna
  • Tong-Yi Zhang
  • Wen-Cong Lu
  • Quan Qian
  • Jonathan Sze Choong Low
  • Jeremy Heiarii Ronald Yune
  • Daren Zong Loong Tan
  • Stéphane Bressan
  • Stefano Sanvito
  • Surya R. Kalidindi
Article

Abstract

Materials informatics employs techniques, tools, and theories drawn from the emerging fields of data science, internet, computer science and engineering, and digital technologies to the materials science and engineering to accelerate materials, products and manufacturing innovations. Manufacturing is transforming into shorter design cycles, mass customization, on-demand production, and sustainable products. Additive manufacturing or 3D printing is a popular example of such a trend. However, the success of this manufacturing transformation is critically dependent on the availability of suitable materials and of data on invertible processing–structure–property–performance life cycle linkages of materials. Experience suggests that the material development cycle, i.e. the time to develop and deploy new material, generally exceeds the product design and development cycle. Hence, there is a need to accelerate materials innovation in order to keep up with product and manufacturing innovations. This is a major challenge considering the hundreds of thousands of materials and processes, and the huge amount of data on microstructure, composition, properties, and functional, environmental, and economic performance of materials. Moreover, the data sharing culture among the materials community is sparse. Materials informatics is key to the necessary transformation in product design and manufacturing. Through the association of material and information sciences, the emerging field of materials informatics proposes to computationally mine and analyze large ensembles of experimental and modeling datasets efficiently and cost effectively and to deliver core materials knowledge in user-friendly ways to the designers of materials and products, and to the manufacturers. This paper reviews the various developments in materials informatics and how it facilitates materials innovation by way of specific examples.

Keywords

Materials informatics Materials data analytics Materials modelling Materials data mining Materials selection Materials web platform Materials 4.0 

Notes

Acknowledgements

Seeram Ramakrishna acknowledges support from Lloyds Register Foundation Grant LRF WBS 265-000-553-597. Surya R. Kalidini acknowledges support from NIST Grant 70NANB14H191. W.C. Lu, Q. Qian and T.Y. Zhang acknowledge support from National Key Research and Development Program of China (2016YFB0700504, and Science and Technology Commission of Shanghai Municipality (Nos. 15DZ2260300 and 16DZ2260600), China. Stefano Sanvito acknowledge support from Science Foundation of Ireland (14/IA/2624 and AMBER Center).

References

  1. Adams, B. L., Kalidindi, S. R., & Fullwood, D. (2012). Microstructure sensitive design for performance optimization. Oxford: Butterworth-Heinemann.Google Scholar
  2. Agrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the fourth paradigm of science in materials science. APL Materials, 4(5), 053208.  https://doi.org/10.1063/1.4946894.CrossRefGoogle Scholar
  3. Agrawal, A., Deshpande, P. D., Cecen, A., Gautham, B. P., Choudhary, A. N., & Kalidindi, S. R. (2014). Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Materials and Manufacturing Innovation, 3, 8.  https://doi.org/10.1186/2193-9772-3-8.CrossRefGoogle Scholar
  4. Astrup, T., Møller, J., & Fruergaard, T. (2009). Incineration and co-combustion of waste: Accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27(8), 789–799.  https://doi.org/10.1177/0734242X09343774.CrossRefGoogle Scholar
  5. Balachandran, P. V., Xue, D., Theiler, J., Hogden, J., & Lookman, T. (2016). Adaptive strategies for materials design using uncertainties. Scientific Reports, 6 (1966).Google Scholar
  6. Bergamaschi, E., Murphy, F., Poland, C. A., Mullins, M., Costa, A. L., Mcalea, E., et al. (2015). Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: Evidences from industrial case studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(6), 839–855.  https://doi.org/10.1002/wnan.1340.Google Scholar
  7. Brough, D. B., Wheeler, D., Warren, J., & Kalidindi, S. R. (2016). Microstructure-based knowledge systems for capturing process-structure evolution linkages. Current Opinion in Solid State & Materials Science, 21, 129–140.CrossRefGoogle Scholar
  8. Brownlee, J. (2013) A tour of machine learning algorithms. http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/.Accessed 2012.
  9. Carrete, J., Li, W., Mingo, N., Wang, S., & Curtarolo, S. (2014). Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 4, 011019.CrossRefGoogle Scholar
  10. Çeçen, A., Fast, T., Kumbur, E. C., & Kalidindi, S. R. (2014). A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells. Journal of Power Sources, 245, 144–153.CrossRefGoogle Scholar
  11. Cerri, D., & Terzi, S. (2016). Proposal of a toolset for the improvement of industrial systems’ lifecycle sustainability through the utilization of ICT technologies. Computers in Industry, 81, 47–54.  https://doi.org/10.1016/j.compind.2015.09.003.CrossRefGoogle Scholar
  12. Corona, A., Madsen, B., Hauschild, M. Z., & Birkved, M. (2016). Natural fibre selection for composite eco-design. CIRP Annals Manufacturing Technology, 65(1), 13–16.  https://doi.org/10.1016/j.cirp.2016.04.032.CrossRefGoogle Scholar
  13. de Jong, M., Chen, W., Notestine, R., Persson, K., Ceder, G., Jain, A., et al. (2016). A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Scientific Reports, 6, 34256.  https://doi.org/10.1038/srep34256.CrossRefGoogle Scholar
  14. de Pablo, J. J., Jones, B., Kovacs, C. L., Ozolins, V., & Ramirez, A. P. (2014). The materials genome initiative, the interplay of experiment, theory and computation. Current Opinion in Solid State and Materials Science, 18(2), 99–117.  https://doi.org/10.1016/j.cossms.2014.02.003.CrossRefGoogle Scholar
  15. Dean, J. (1990). Lange’s handbook of chemistry. Material and Manufacturing Process, 5(4), 687–688.CrossRefGoogle Scholar
  16. Dima, A., Bhaskarla, S., Becker, C., Brady, M., Campbell, C., Dessauw, P., et al. (2016). Informatics infrastructure for the materials genome initiative. JOM, 68(8), 2053–2064.  https://doi.org/10.1007/s11837-016-2000-4.CrossRefGoogle Scholar
  17. Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. Journals of American Statistical Association, 78, 316–331.CrossRefGoogle Scholar
  18. Friedman, J. (2001). Greedy boosting approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.  https://doi.org/10.1214/aos/1013203451.CrossRefGoogle Scholar
  19. Fischer, C. C., Tibbetts, K. J., Morgan, D., & Ceder, G. (2006). Predicting crystal structure by merging data mining with quantum mechanics. Nature Materials, 5(8), 641–646.CrossRefGoogle Scholar
  20. Fürnkranz, J., Gamberger, D., & Lavrač, N. (2012). Foundations of rule learning. Berlin: Springer.CrossRefGoogle Scholar
  21. Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.Google Scholar
  22. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C., & Scheffler, M. (2014). Big data of materials science: Critical role of the descriptor. Physical Review Letters, 114(10), 105503.CrossRefGoogle Scholar
  23. Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010). Information and communication technology for industrial symbiosis. Journal of Industrial Ecology, 14, 740–753.CrossRefGoogle Scholar
  24. Gupta, A., Cecen, A., Goyal, S., Singh, A. K., & Kalidindi, S. R. (2015). Structure-property linkages using a data science approach: Application to a non-metallic inclusions/steel composite system. Acta Materialia, 91, 239–254.CrossRefGoogle Scholar
  25. Hervy, M., Evangelisti, S., Lettieri, P., & Lee, K.-Y. (2015). Life cycle assessment of nanocellulose-reinforced advanced fibre composites. Composites Science and Technology, 118, 154–162.  https://doi.org/10.1016/j.compscitech.2015.08.024.CrossRefGoogle Scholar
  26. Jain, A., Persson, K. A., & Ceder, G. (2016). Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases. APL Materials, 4(5), 053102.  https://doi.org/10.1063/1.4944683.CrossRefGoogle Scholar
  27. Kalidindi, S. R. (2015). Hierarchical materials informatics. Oxford: Butterworth Heinemann.Google Scholar
  28. Kalidindi, S. R., Niezgoda, S. R., Landi, G., Vachhani, S., & Fast, T. (2010). A novel framework for building materials knowledge systems. Computers, Materials & Continua, 17, 103–125.Google Scholar
  29. Kalidindi, S. R., Brough, D. B., Li, S., Cecen, A., Blekh, A. L., Congo, F. Y. P., et al. (2016a). Role of materials data science and informatics in accelerated materials innovation. MRS Bulletin, 41(8), 596–602.  https://doi.org/10.1557/mrs.2016.164.CrossRefGoogle Scholar
  30. Kalidindi, S. R., & De Graef, M. (2015). Materials data science: Current status and future outlook, annual review of materials research. Annual Reviews, 45(1), 171–193.  https://doi.org/10.1146/annurev-matsci-070214-020844.Google Scholar
  31. Kalidindi, S. R., Medford, A. J., & McDowell, D. L. (2016b). Vision for data and informatics in the future materials innovation ecosystem. JOM, 68, 2126–2137.CrossRefGoogle Scholar
  32. Kaufman, L., & Ågren, J. (2014). CALPHAD, first and second generation—Birth of the materials genome. Scripta Materialia, 70, 3–6.  https://doi.org/10.1016/j.scriptamat.2012.12.003.CrossRefGoogle Scholar
  33. Khosravani, A., Cecen, A., & Kalidindi, S. R. (2017). Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: Application to dual-phase steels. Acta Materialia, 123, 55–69.CrossRefGoogle Scholar
  34. Landi, G., Niezgoda, S. R., & Kalidindi, S. R. (2010A). Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems. Acta Materialia, 58, 2716–2725.CrossRefGoogle Scholar
  35. Landi, G., & Kalidindi, S. R. (2010B). Thermo-elastic localization relationships for multi-phase composites. Computers, Materials & Continua, 16, 273–293.Google Scholar
  36. Le, T. C., & Winkler, D. A. (2016). Discovery and optimization of materials using evolutionary approaches. Chemical Reviews, 116(10), 6107–6132.  https://doi.org/10.1021/acs.chemrev.5b00691.CrossRefGoogle Scholar
  37. Lookman, T., Balachandran, P. V., Xue, D., Hogden, J., & Theiler, J. (2016). Statistical inference and adaptive design for materials discovery. Current Opinion in Solid State and Materials Science,.  https://doi.org/10.1016/j.cossms.2016.10.002.Google Scholar
  38. Low, J. S. C., Lu, W. F., & Song, B. (2014). Methodology for an integrated life cycle approach to design for environment. Key Engineering Materials,.  https://doi.org/10.4028/www.scientific.net/KEM.572.20.Google Scholar
  39. Lu, B., Zhang, J., Xue, D., & Gu, P. (2011). Systematic lifecycle design for sustainable product development. Concurrent Engineering,.  https://doi.org/10.1177/1063293X11424513.Google Scholar
  40. McDowell, D. L., & Kalidindi, S. R. (2016). The materials innovation ecosystem: A key enabler for the materials genome initiative. MRS Bulletin, 41(4), 326–337.  https://doi.org/10.1557/mrs.2016.61.CrossRefGoogle Scholar
  41. Mitchell, T. M. (1997). Machine Learning. New York City: McGraw Hill.Google Scholar
  42. Mulholland, G. J., & Paradiso, S. P. (2016). Perspective: Materials informatics across the product lifecycle—Selection, manufacturing, and certification. APL Materials, 4(5), 053207.  https://doi.org/10.1063/1.4945422.CrossRefGoogle Scholar
  43. National Science and Technology Council. (2011). Materials genome initiative for global competitiveness. Washington: National Science and Technology Council.Google Scholar
  44. NISP. (2015a). A brief introduction to CRISP. National Industrial Symbiosis Programme. http://sdrn.policystudiesinstitute.org.uk/sites/default/files/events/Paul Innes CRI (Accessed October 25, 2015).
  45. NISP. (2015b). Confidentiality Charter CRISP. National Industrial Symbiosis Programme. Available at: https://www.tees.ac.uk/docs/DocRepo/Clemance/NISPConfidentialtyCharter.pdf (Accessed: 26 October 2015).
  46. NIST. (2013). Materials informatics. National Institute of Standards and Technology. https://www.nist.gov/programs-projects/materials-informatics. Accessed October 30, 2016.
  47. Panchal, J. H., Kalidindi, S. R., & McDowell, D. L. (2013). Key computational modeling issues in integrated computational materials engineering. Journal of Computer-Aided Design, 45, 4–25.CrossRefGoogle Scholar
  48. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(8), 1226–1238.  https://doi.org/10.1109/TPAMI.2005.159.CrossRefGoogle Scholar
  49. Phillips, C. L., & Littlewood, P. (2016). Preface: Special topic on materials genome. APL Materials, 4(5), 2014–2016.  https://doi.org/10.1063/1.4952608.CrossRefGoogle Scholar
  50. Puchala, B., Tarcea, G., Marquis, E. A., Hedstrom, M., Jagadish, H. V., & Allison, J. E. (2016). The materials commons: A collaboration platform and information repository for the global materials community. JOM, 68(8), 2035–2044.  https://doi.org/10.1007/s11837-016-1998-7.CrossRefGoogle Scholar
  51. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.Google Scholar
  52. Raabe, B., Low, J. S. C., Juraschek, M., Herrmann, C., Tjandra, T. B., Ng, Y. T., et al. (2017). Collaboration platform for enabling industrial symbiosis? Application of the by-product exchange network model. Procedia CIRP, 61, 263–268.  https://doi.org/10.1016/j.procir.2016.11.225.CrossRefGoogle Scholar
  53. Raccuglia, P., Elbert, K. C., Adler, P. D. F., Falk, C., Wenny, M. B., Mollo, A., et al. (2016). Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601), 73–76.  https://doi.org/10.1038/nature17439.CrossRefGoogle Scholar
  54. Rajan, Jose, & Seeram, Ramakrishna, (2018). Materials 4.0: Materials big data enabled materials discovery. Applied Materials Today.  https://doi.org/10.1016/j.apmt.2017.12.015
  55. Rajan, K. (2015). Materials informatics: The materials gene and big data. Annual Review of Materials Research, 45(1), 153–169.  https://doi.org/10.1146/annurev-matsci-070214-021132.CrossRefGoogle Scholar
  56. Rodgers, J. R., & Cebon, D. (2006). Materials informatics. MRS Bulletin,31(12), 975–980. https://www.cambridge.org/core/article/materials-informatics/4DDA16B3B93C616EBAE618445488A09B.
  57. Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 11(6), 601–617.CrossRefGoogle Scholar
  58. Sanvito, S., Oses, C., Xue, J., Tiwari, A., Zic, M., Archer, T., et al. (2017). Accelerated discovery of new magnets in the Heusler alloy family. Science Advances, 3, e1602241.CrossRefGoogle Scholar
  59. Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and Trends in Machine Learning., 4(2), 107–194.  https://doi.org/10.1561/2200000018.
  60. Song, B., Yeo, Z., Low, J. S. C., Koh, D. J., Kurle, D., Cerdas, F., et al. (2015). A big data analytics approach to develop industrial symbioses in large cities. Procedia CIRP, 29, 450–455.  https://doi.org/10.1016/j.procir.2015.01.066.CrossRefGoogle Scholar
  61. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological),58(1), 267–88. http://www.jstor.org/stable/2346178.
  62. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.CrossRefGoogle Scholar
  63. Vapnik, V. (1998). Statistical learning theory. New York: Wiley.Google Scholar
  64. Wang, Z., et al. (2014). Integrated materials design and informatics platform within the materials genome framework. Chinese Science Bulletin, 59(15), 1755–1764.  https://doi.org/10.1007/s11434-014-0225-6.CrossRefGoogle Scholar
  65. Xiong, P., Ji, X., Zhao, X., Lv, W., Liu, T., & Lu, W. (2015). Materials design and control synthesis of the layered double hydroxide with the desired basal spacing. Chemometrics and Intelligent Laboratory Systems, 144, 11–16.  https://doi.org/10.1016/j.chemolab.2015.03.005.CrossRefGoogle Scholar
  66. Xue, D., Balachandran, P. V., Hogden, J., Theiler, J., Xue, D., & Lookman, T. (2016). Accelerated search for materials with targeted properties by adaptive design. Nature Communications, 7, 11241.CrossRefGoogle Scholar
  67. Xue, D., Xue, D., Yuan, R., Zhou, Y., Balachandran, P. V., Ding, X., et al. (2017). An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Materialia, 125, 532–541.  https://doi.org/10.1016/j.actamat.2016.12.009.CrossRefGoogle Scholar
  68. Yabansu, Y. C., & Kalidindi, S. R. (2015). Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Materialia, 94, 26–35.CrossRefGoogle Scholar
  69. Yabansu, Y. C., Patel, D. K., & Kalidindi, S. R. (2014). Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Materialia, 81, 151–160.CrossRefGoogle Scholar
  70. Yabansu, Y. C., Steinmetz, P., Hotzer, J., Kalidindi, S. R., & Nestler, B. (2017). Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Materialia, 124, 182–194.CrossRefGoogle Scholar
  71. Zhang, H. C., Li, J., Shrivastava, P., Whitley, A., & Merchant, M. E. (2004). A web-based system for reverse manufacturing and product environmental impact assessment considering enf-of-life dispositions. CIRP Annals Manufacturing Technology, 53(1), 5–8.  https://doi.org/10.1016/S0007-8506(07)60632-5.CrossRefGoogle Scholar
  72. Zhao, Y. H., Abraham, M. H., & Zissimos, A. M. (2003). Determination of McGowan volumes for ions and correlation with van der Waals volumes. Journal of Chemical Information & Computer Sciences, 43(6), 1848–1854.CrossRefGoogle Scholar
  73. Zhao, H., Li, X., Zhang, Y., Schadler, L. S., Chen, W., & Brinson, L. C. (2016). Perspective: NanoMine: A material genome approach for polymer nanocomposites analysis and design. APL Materials, 4(5), 053204.  https://doi.org/10.1063/1.4943679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seeram Ramakrishna
    • 1
  • Tong-Yi Zhang
    • 2
  • Wen-Cong Lu
    • 2
  • Quan Qian
    • 2
  • Jonathan Sze Choong Low
    • 3
  • Jeremy Heiarii Ronald Yune
    • 3
  • Daren Zong Loong Tan
    • 3
  • Stéphane Bressan
    • 4
  • Stefano Sanvito
    • 5
  • Surya R. Kalidindi
    • 6
  1. 1.Department of Mechanical EngineeringNational University of Singapore, Institution of Engineers Singapore, and SPRINGSingaporeSingapore
  2. 2.Materials Genome Institute (MGI), Shanghai University (SHU), and Shanghai Materials Genome InstituteShanghaiChina
  3. 3.Singapore Institute of Manufacturing Technology, ASTARSingaporeSingapore
  4. 4.School of ComputingNational University of SingaporeSingaporeSingapore
  5. 5.School of Physics, AMBER and CRANN InstituteTrinity CollegeDublin 2Ireland
  6. 6.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations