An analytical model taking feed rate effect into consideration for scallop height calculation in milling with torus-end cutter

  • Stéphane Segonds
  • Philippe Seitier
  • Cyril Bordreuil
  • Florian Bugarin
  • Walter Rubio
  • Jean-Max Redonnet
Article
  • 40 Downloads

Abstract

Feed rate effect on scallop height in complex surface milling by torus-end mill is rarely studied. In a previous paper, an analytical predictive model of scallop height based on transverse step over distance has been established. However, this model doesn’t take feed rate effect into consideration. In the present work an analytical expression of scallop height, including feed rate effect, is detailed in order to quantify feed rate effect and thus to estimate more precisely the surface quality. Then, an experimental validation is conducted, comparing the presented model predictions with experimental results. Actually, the share of the scallop height due to feed effect is highly dependent on the machining configuration. However, most of time, the feed effect on total scallop height values is far from being negligible.

Keywords

Free-form surface CNC machine-tool End-mill Toroidal cutter Effective tool radius Feed rate Scallop height 

References

  1. Bedi, D. S., Ismail, F., Mahjoob, M. J., & Chen, Y. (1997). Toroidal versus ball nose and flat bottom end mills. The International Journal of Advanced Manufacturing Technology, 13(5), 326–332. doi: 10.1007/BF01178252.CrossRefGoogle Scholar
  2. Can, A., & Ünüvar, A. (2010). A novel iso-scallop tool-path generation for efficient five-axis machining of free-form surfaces. The International Journal of Advanced Manufacturing Technology, 51(9–12), 1083–1098. doi: 10.1007/s00170-010-2698-z.CrossRefGoogle Scholar
  3. Cheţan, P., Boloş, V., Pozdîrcă, A., & Peterlicean, A. (2014). Influence of radial finishing trajectories to the roughness obtained by milling of spherical surfaces. Procedia Technology, 12, 420–426. doi: 10.1016/j.protcy.2013.12.508.CrossRefGoogle Scholar
  4. Cheţn, P., Boloş, V., & Pozdîrcă, A. (2014). Influence of plane-parallel finishing trajectories to the roughness obtained by milling of spherical surfaces. Procedia Technology, 12, 411–419. doi: 10.1016/j.protcy.2013.12.507.CrossRefGoogle Scholar
  5. Chen, Z. C., & Song, D. (2006). A practical approach to generating accurate iso-cusped tool paths for three-axis CNC milling of sculptured surface parts. Journal of Manufacturing Processes, 8(1), 29–38. doi: 10.1016/S1526-6125(06)70099-8.CrossRefGoogle Scholar
  6. Cho, H., Jun, Y., & Yang, M. (1993). 5-axis CNC milling for effective machining of sculptured surfaces. International Journal of Production Research, 31(11), 2559–2573.CrossRefGoogle Scholar
  7. Denkena, B., de Leon, L., Turger, A., & Behrens, L. (2010). Prediction of contact conditions and theoretical roughness in manufacturing of complex implants by toric grinding tools. International Journal of Machine Tools and Manufacture, 50(7), 630–636. doi: 10.1016/j.ijmachtools.2010.03.008.CrossRefGoogle Scholar
  8. Denkena, B., Köhler, J., & van der Meer, M. (2013). A roughness model for the machining of biomedical ceramics by toric grinding pins. CIRP Journal of Manufacturing Science and Technology, 6(1), 22–33. doi: 10.1016/j.cirpj.2012.07.002.CrossRefGoogle Scholar
  9. Djebali, S., Segonds, S., Redonnet, J. M., & Rubio, W. (2015). Using the global optimisation methods to minimise the machining path length of the free-form surfaces in three-axis milling. International Journal of Production Research, 53(17), 5296–5309.CrossRefGoogle Scholar
  10. Du, J., Xg, Y., & Xt, T. (2012). The avoidance of cutter gouging in five-axis machining with a fillet-end milling cutter. The International Journal of Advanced Manufacturing Technology, 62(1–4), 89–97.CrossRefGoogle Scholar
  11. Duan, X., Peng, F., Yan, R., Zhu, Z., & Li, B. (2015). Experimental study of the effect of tool orientation on cutter deflection in five-axis filleted end dry milling of ultrahigh-strength steel. The International Journal of Advanced Manufacturing Technology, 81(1–4), 653–666.CrossRefGoogle Scholar
  12. He, Y., & Chen, Z. T. (2016). Achieving quasi constant machining strip width in five-axis frontal grinding with toroidal tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(3), 587–592.CrossRefGoogle Scholar
  13. Kim, B., & Chu, C. (1994). Effect of cutter mark on surface roughness and scallop height in sculptured surface machining. Computer-Aided Design, 26(3), 179–188.CrossRefGoogle Scholar
  14. Kim, B. H., & Chu, C. N. (1999). Texture prediction of milled surfaces using texture superposition method. Computer-Aided Design, 31(8), 485–494. doi: 10.1016/S0010-4485(99)00045-7.CrossRefGoogle Scholar
  15. Lasemi, A., Xue, D., & Gu, P. (2010). Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Computer-Aided Design, 42(7), 641–654. doi: 10.1016/j.cad.2010.04.002.CrossRefGoogle Scholar
  16. Lee, Y. S. (1998). Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer-Aided Design, 30(7), 559–570. doi: 10.1016/S0010-4485(98)00822-7.CrossRefGoogle Scholar
  17. Lin, R. S., & Koren, Y. (1996). Efficient tool-path planning for machining free-form surfaces. Journal of Engineering for Industry, 118(1), 20–28. doi: 10.1115/1.2803642.CrossRefGoogle Scholar
  18. Perles, A., Djebali, S., Lemouzy, S., Segonds, S., Redonnet, J. M., & Rubio, W. (2015). Milling plan optimization with an emergent problemsolving approach. Computers & Industrial Engineering, 87, 506–517. doi: 10.1016/j.cie.2015.05.025.CrossRefGoogle Scholar
  19. Pi, J., Red, E., & Jensen, G. (1998). Grind-free tool path generation for five-axis surface machining. Computer Integrated Manufacturing Systems, 11(4), 337–350. doi: 10.1016/S0951-5240(98)00033-0.CrossRefGoogle Scholar
  20. Redonnet, J. M., Rubio, W., Monies, F., & Dessein, G. (2000). Optimising tool positioning for end-mill machining of free-form surfaces on 5-axis machines for both semi-finishing and finishing. The International Journal of Advanced Manufacturing Technology, 16(6), 383–391.Google Scholar
  21. Redonnet, J. M., Djebali, S., Segonds, S., Senatore, J., & Rubio, W. (2013). Study of the effective cutter radius for end milling of free-form surfaces using a torus milling cutter. Computer-Aided Design, 45(6), 951–962. doi: 10.1016/j.cad.2013.03.002.CrossRefGoogle Scholar
  22. Redonnet, J. M., Gamboa Vázquez, A., Traslosheros Michel, A., & Segonds, S. (2016). Optimisation of free-form surface machining using parallel planes strategy and torus milling cutter. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (in press)Google Scholar
  23. Senatore, J., Segonds, S., Rubio, W., & Dessein, G. (2012). Correlation between machining direction, cutter geometry and step-over distance in 3-axis milling: Application to milling by zones. Computer-Aided Design, 44(12), 1151–1160. doi: 10.1016/j.cad.2012.06.008.CrossRefGoogle Scholar
  24. Suresh, K., & Yang, D. C. H. (1994). Constant scallop-height machining of free-form surfaces. Journal of Engineering for Industry, 116(2), 253–259. doi: 10.1115/1.2901938.CrossRefGoogle Scholar
  25. Tai, C. C., & Fuh, K. H. (1994). A predictive force model in ball-end milling including eccentricity effects. International Journal of Machine Tools and Manufacture, 34(7), 959–979. doi: 10.1016/0890-6955(94)90028-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Stéphane Segonds
    • 1
  • Philippe Seitier
    • 1
  • Cyril Bordreuil
    • 2
  • Florian Bugarin
    • 1
  • Walter Rubio
    • 1
  • Jean-Max Redonnet
    • 1
  1. 1.Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader — CNRS UMR 5312 — UPS/INSA/Mines Albi/ISAEToulouseFrance
  2. 2.Laboratoire de Mécanique et de Génie CivilUniversité de Montpellier - CC048MontpellierFrance

Personalised recommendations