Post-prognostics decision making in distributed MEMS-based systems

  • Haithem Skima
  • Christophe Varnier
  • Eugen Dedu
  • Kamal Medjaher
  • Julien Bourgeois


In this paper, the problem of using prognostics information of micro-electro-mechanical systems (MEMS) for post-prognostics decision in distributed MEMS-based systems is addressed. A strategy of post-prognostics decision is proposed and then implemented in a distributed MEMS-based conveying surface. The surface is designed to convey fragile and tiny micro-objects. The purpose is to use the prognostics results of the used MEMS in the form of remaining useful life to maintain as long as possible a good performance of the conveying surface. For that, a distributed algorithm for distributed decision making in dynamic conditions is proposed. In addition, a simulator to simulate the decision in the targeted system is developed. Simulation results show the importance of the post-prognostics decision to optimize the utilization of the system and improve its performance.


Prognostics and health management Micro-electro-mechanical systems Post-prognostics decision Distributed systems 



This work has been supported by the Région Franche-Comté and the Labex ACTION Project (Contract ANR-11-LABX-0001-01).


  1. Asmai, S. A., Hussin, B., & Yusof, M. M. (2010). A framework of an intelligent maintenance prognosis tool. In 2010 second international conference on computer research and development, IEEE (pp. 241–245).Google Scholar
  2. Balaban, E., & Alonso, J. J. (2012). An approach to prognostic decision making in the aerospace domain. In Annual conference of the prognostics and health management society (pp. 396–415).Google Scholar
  3. Barros, A., Bérenguer, C., & Grall, A. (2003). Optimization of replacement times using imperfect monitoring information. IEEE Transactions on Reliability, 52(4), 523–533.CrossRefGoogle Scholar
  4. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2015). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.CrossRefGoogle Scholar
  5. Besnard, F., & Bertling, L. (2010). An approach for condition-based maintenance optimization applied to wind turbine blades. IEEE Transactions on Sustainable Energy, 1(2), 77–83.CrossRefGoogle Scholar
  6. Bogdanov, A., Chiu, S., Gökdere, L. U., & Vian, J. (2006). Stochastic optimal control of a servo motor with a lifetime constraint. In 2006 45th IEEE conference on decision and control, IEEE (pp. 4182–4187).Google Scholar
  7. Bole, B., Tang, L., Goebel, K., & Vachtsevanos, G. (2011). Adaptive load-allocation for prognosis-based risk management. In Annual conference of the prognostics and health management society (pp. 1–10).Google Scholar
  8. Boutoustous, K., Laurent, G. J., Dedu, E., Matignon, L., Bourgeois, J., & Fort-Piat, N. L. (2010). Distributed control architecture for smart surfaces. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 23, pp. 2018–2024). IEEE, Taipei.Google Scholar
  9. Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23(3), 797–809.CrossRefGoogle Scholar
  10. Brown, D. W., Georgoulas, G., Bole, B., Pei, H. L., Orchard, M., & Tang, L., et al. (2009). Prognostics enhanced reconfigurable control of electro-mechanical actuators. In Annual conference of the prognostics and health management society (pp. 1–17). PHM Society Rochester, NY.Google Scholar
  11. Camci, F., Valentine, G. S., & Navarra, K. (2007). Methodologies forintegration of PHM systems with maintenance data. Technical report, DTIC Document.Google Scholar
  12. Chretien, S., Herr, N., Nicod, J. M., & Varnier, C. (2015). A post-prognostics decision approach to optimize the commitment of fuel cell systems in stationary applications. In 2015 IEEE conference on prognostics and health management (PHM), IEEE (pp. 1–7).Google Scholar
  13. Dahroug, B., Laurent, G. J., Guelpa, V., & Fort-Piat, L., et al. (2015). Design, modeling and control of a modular contactless wafer handling system. In 2015 IEEE international conference on robotics and automation (ICRA), IEEE (pp 976–981).Google Scholar
  14. Dijkstra, E. W. (1959). Communication with an automatic computer. Ph.D. thesis, University of Amsterdam.Google Scholar
  15. Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM), 19(2), 248–264.CrossRefGoogle Scholar
  16. Elghazel, W., Medjaher, K., Zerhouni, N., Bahi, J., Farhat, A., Guyeux, C., & Hakem, M. (2015). Random forests for industrial device functioning diagnostics using wireless sensor networks. In 2015 IEEE aerospace conference, IEEE (pp. 1–9).Google Scholar
  17. Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of Mathematics, 8(3), 399–404.CrossRefGoogle Scholar
  18. Fukuta, Y., Chapuis, Y. A., Mita, Y., & Fujita, H. (2006). Design, fabrication, and control of mems-based actuator arrays for air-flow distributed micromanipulation. Journal of Microelectromechanical Systems, 15(4), 912–926.CrossRefGoogle Scholar
  19. Haddad, G., Sandborn, P., & Pecht, M. (2011). A real options optimization model to meet availability requirements for offshore wind turbines. In MFPT: The Applied Systems Health Management Conference, Virginia Beach, Virginia.Google Scholar
  20. He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23(2), 221–226.Google Scholar
  21. Iyer, N., Goebel, K., & Bonissone, P. (2006). Framework for post-prognostic decision support. In 2006 IEEE aerospace conference, IEEE (pp. 10–pp).Google Scholar
  22. Kirby, B. T., Ashley-Rollman, M., & Goldstein, S. C. (2011). Blinky blocks: A physical ensemble programming platform. In CHI’11 extended abstracts on human factors in computing systems (pp. 1111–1116). ACM, Vancouver.Google Scholar
  23. Konishi, S., & Fujita, H. (1994). A conveyance system using air flow based on the concept of distributed micro motion systems. Journal of Microelectromechanical Systems, 3(2), 54–58.CrossRefGoogle Scholar
  24. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., & Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research, 27(3–4), 373–386.CrossRefGoogle Scholar
  25. Lakhlef, H., Mabed, H., & Bourgeois, J. (2014). An energy and memory-efficient distributed self-reconfiguration for modular sensor/robot networks. The Journal of Supercomputing, 69(2), 908–929.CrossRefGoogle Scholar
  26. Lebold, M., & Thurston, M. (2001). Open standards for condition-based maintenance and prognostic systems. In Maintenance and reliability conference (MARCON) (pp. 6–9).Google Scholar
  27. Lei, X., Sandborn, P., Bakhshi, R., Kashani-Pour, A., & Goudarzi, N. (2015). PHM based predictive maintenance optimization for offshore wind farms. In 2015 IEEE conference on prognostics and health management (PHM), IEEE (pp. 1–8).Google Scholar
  28. Lewandowski, S. (2010). Shortest paths and negative cycle detection in graphs with negative weights. Technical report, University of Stuttgart.Google Scholar
  29. Montgomery, N., Banjevic, D., & Jardine, A. K. (2012). Minor maintenance actions and their impact on diagnostic and prognostic CBM models. Journal of Intelligent Manufacturing, 23(2), 303–311.CrossRefGoogle Scholar
  30. Mosallam, A., Medjaher, K., & Zerhouni, N. (2014). Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing 27(5), 1–12.Google Scholar
  31. Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a bayesian framework. IEEE Transactions on Instrumentation and Measurement, 58(2), 291–296.CrossRefGoogle Scholar
  32. Saha, B., Koshimoto, E., Quach, C. C., Hogge, E. F., Strom, T. H., Hill, B. L., Vazquez, S. L., & Goebel, K. (2011). Battery health management system for electric uavs. In 2011 IEEE aerospace conference, IEEE (pp. 1–9).Google Scholar
  33. Salemi, B., Moll, M., & Shen, W. M. (2006). SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 3636–3641).Google Scholar
  34. Sandborn, P. (2005). A decision support model for determining the applicability of prognostic health management (PHM) approaches to electronic systems. In Proceedings of reliability and maintainability symposium (RAMS), Arlington, VA.Google Scholar
  35. Skima, H., Dedu, E., Bourgeois, J., Varnier, C., & Medjaher, K. (2016a). Optimal path evolution in a dynamic distributed MEMS-based conveyor. In International conference on dependability and complex systems DepCoS-RELCOMEX (Vol. 11, pp. 395–408). Springer, AISC 470, Brunw, Poland.Google Scholar
  36. Skima, H., Medjaher, K., Varnier, C., Dedu, E., & Bourgeois, J. (2016b). A hybrid prognostics approach for mems: From real measurements to remaining useful life estimation. Microelectronics Reliability, 65, 79–88.CrossRefGoogle Scholar
  37. Tang, L., Hettler, E., Zhang, B., & DeCastro, J. (2011). A testbed for real-time autonomous vehicle PHM and contingency management applications. In Annual conference of the prognostics and health management society (pp. 1–11).Google Scholar
  38. Vieira, R Jd A, Lietti, M., & Sanz-Bobi, M. A. (2012). New variable health threshold based on the life observed for improving the scheduled maintenance of a wind turbine. Advanced Maintenance Engineering, 2, 187–192.Google Scholar
  39. Zhang, Z., Wang, Y., & Wang, K. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institut FEMT-ST UMR 6174, ENS2M, CNRS, Univ. Bourgogne Franche-ComtéBesançonFrance
  2. 2.Production Engineering Laboratory (LGP)INP-ENITTarbesFrance

Personalised recommendations