Advertisement

Journal of Intelligent Manufacturing

, Volume 30, Issue 2, pp 783–794 | Cite as

Multi-objective robust design optimization of a sewing mechanism under uncertainties

  • Bilel NajlawiEmail author
  • Mohamed Nejlaoui
  • Zouhaier Affi
  • Lotfi Romdhane
Article

Abstract

This work deals with the multi-objective robust design optimization of a needle-bar-and-thread-take-up-lever (NBTTL) mechanism used in sewing machines. A combined multi-objective imperialist competitive algorithm and Monte Carlo method are developed and used for the robust multi-objective optimization of the NBTTL mechanism. This robust optimization considers simultaneously the Needle Jerk, the transmission angle, the coupler tracking error and their standard deviations where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the NBTTL performances to the design parameters uncertainties compared to the deterministic one and to the commercialized Juki 8700 machine.

Keywords

Robust design Sewing machine Uncertainty Monte Carlo MOICA 

List of symbols

NJ

Needle Jerk index

TE

Tracking error of the coupler point

TA

Transmission angle index

DP

Design parameters

D(DP)

The search domain of DP

SR

Robust solution

SD

Deterministic solution

\({\upgamma }\)

Deviation from original direction of colony

\(\hbox {Cost}_{\mathrm{imp}}\)

Cost of an imperialist

\(\hbox {Cost}_{\mathrm{col}}\)

Cost of a colony

\(\hbox {N}_{\mathrm{col}}\)

Number of colonies

\(\hbox {C}_\mathrm{n} \)

The normalized cost of the \(\hbox {n}{\mathrm{th}}\) imperialist

\(\hbox {P}_\mathrm{n} \)

The normalized power of \(\hbox {n}{\mathrm{th}}\) imperialist

\(\hbox {q}_\mathrm{i} \)

\(\hbox {i}{\mathrm{th}}\) NBTTL link measurement value

\(\bar{{\upsigma }}\)

Standard deviation of \(\bar{\hbox {q}}\)

\(\bar{\hbox {q}}\)

Mean value of a series \(\hbox {q}_\mathrm{i} \)

\(\upbeta \)

Assimilation coefficient

\({\uptheta }\)

Parameter of colonies’ deviation

N

Number of empires

\({\upmu }\)

Transmission angle of motion

\(\hbox {X}\)

Direction parameter of colonies motion

\(\hbox {d}\)

Distance between a colony and an imperialist

\(\hbox {f}_{\mathrm{j,n}} \)

The value of the objective function j for the imperialist n

\(\hbox {f}_\mathrm{j}^{\min } \)

The minimum values of objective function j in each iteration

\(\hbox {P}_{\mathrm{p}_\mathrm{n} } \)

The possession probability of the \(\hbox {n}{\mathrm{th}}\) empire

\(\hbox {NTC}_\mathrm{n} \)

The normalized total cost of the \(\hbox {n}{\mathrm{th}}\) empire

References

  1. Al-Aomar, R. (2006). Incorporating robustness into genetic algorithm search of stochastic simulation outputs. Simulation Modelling Practice and Theory, 14, 201–223.CrossRefGoogle Scholar
  2. Araujo, A., Silvano, S., & Martins, N. (2014). Monte Carlo uncertainty simulation of surface emissivity at ambient temperature obtained by dual spectral infrared radiometry. Infrared Physics and Technology, 67, 131–137.CrossRefGoogle Scholar
  3. Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In IEEE congress on evolutionary computation (pp. 4661–4667).Google Scholar
  4. Berkani, S., Yallese, M., Boulanouar, L., & Mabrouki, T. (2015). Statistical analysis of AISI304 austenitic stainless steel machining using Ti(C, N)/Al2O3/TiN CVD coated carbide tool. International Journal of Industrial Engineering Computations, 6(4), 539–552.CrossRefGoogle Scholar
  5. Bouazizi, M. L., Ghanmi, S., Nasri, R., & Bouhaddi, N. (2009). Robust optimization of the non-linear behavior of a vibrating system. European Journal of Mechanics A: Solids, 28, 141–154.CrossRefGoogle Scholar
  6. Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy Logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRefGoogle Scholar
  7. Cheng, S., & Li, M. (2015). Robust optimization using hybrid differential evolution and sequential quadratic programming. Engineering Optimization, 47(1), 87–106.CrossRefGoogle Scholar
  8. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  9. Ebrahimi, S., Hajizadeh, I., & Payvandy, P. (2014). Multi-objective constrained optimization of a newly developed needle driving mechanism in sewing machine for performance improvement. International Journal of Advanced Design and Manufacturing Technology, 7(4), 9–18.Google Scholar
  10. Ghanmi, S., Guedri, M., Bouazizi, M.-L., & Bouhaddi, N. (2011). Robust multi-objective and multi-level optimization of complex mechanical structures. Mechanical Systems and Signal Processing, 25(7), 2444–2461.CrossRefGoogle Scholar
  11. Gotlih, K., Lojen, D. Z., & Vohar, B. (2007). Optimization of needle penetration velocity using the link drive mechanism in a sewing machine. Fibres and Textiles in Eastern Europe, 15, 66–71.Google Scholar
  12. Jamali, A., Khaleghi, E., Gholaminezhad, I., Nariman-Zadeh, N., Gholaminia, B., & Jamal-Omidi, A. (2014). Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-014-0967-7.
  13. Kalantari, M., Dong, C., & Davies, Ian J. (2016). Multi-objective robust optimization of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading. Composite Structures, 138, 264–275.CrossRefGoogle Scholar
  14. Kamerec, J., Beran, J., Lima, M., Machado, M., Machado, J. M., & Silva, J. P. (2012). Finding the optimal setting of the sewing needle transfer mechanism using simulation software. TRS Textile Research Symposium, Portugal, 41, 1–4.Google Scholar
  15. Matthew, B., James, H., & Gray, K. (2015). A unified approach to measurement error and missing data: Overview and application. Sociological Methods and Research. doi: 10.1177/0049124115585360.
  16. Mishra, P. C., Das, D. K., Ukamanal, M., Routara, B. C., & Sahoo, A. K. (2015). Multi-response optimization of process parameters using Taguchi method and grey relational analysis during turning AA 7075/SiC composite in dry and spray cooling environments. International Journal of Industrial Engineering Computations, 6, 445–456.Google Scholar
  17. Mohammadi, M., Jolai, F., & Reza, T.-M. (2013). Solving a new stochastic multi-mode p-hube covering location problem considering risk by a novel multi-objective algorithm. Applied Mathematical Modelling, 37, 10053–10073.CrossRefGoogle Scholar
  18. Motevalli, M., Zadbar, A., Elyasi, E., & Jalaal, M. (2015). Using Monte-Carlo approach for analysis of quantitative and qualitative operation of reservoirs system with regard to the inflow uncertainty. Journal of African Earth Sciences, 105, 1–16.CrossRefGoogle Scholar
  19. Murugan, S., Ganguli, R., & Harursampath, D. (2008). Aero-elastic response of composite helicopter rotor with random material properties. Journal of Aircraft, 45(1), 306–322.CrossRefGoogle Scholar
  20. Najlawi, B., Nejlaoui, M., Affi, Z., & Romdhane, L. (2016). An improved imperialist competitive algorithm for multi-objective optimization. Engineering Optimization, 48(11), 1823–1844.CrossRefGoogle Scholar
  21. Nejlaoui, M., Houidi, A., Affi, Z., & Romdhane, L. (2013). Multi-objective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criteria. Simulation Modelling Practice and Theory, 30, 21–34.CrossRefGoogle Scholar
  22. Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers and Industrial Engineering, 76, 204–221.CrossRefGoogle Scholar
  23. Payvandy, P., & Ebrahimi, S. (2015). Optimization of the thread take-up lever mechanism in lockstitch sewing machine using the imperialistic competitive algorithm. Journal of Textile and Polymers, 3, 12–18.Google Scholar
  24. Sargade, V. G., Nipanikar, S. R., & Meshram, S. M. (2016). Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment. International Journal of Industrial Engineering Computations, 7, 257–266.CrossRefGoogle Scholar
  25. Shrinivas, S. B., & Chand, S. (2002). Transmission angle in mechanisms. Mechanism and Machine Theory, 37, 175–195.CrossRefGoogle Scholar
  26. Tebassi, H., Yallese, M. A., Khettabi, R., Belhadi, S., Meddour, I., & Francois, G. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7, 111–134.CrossRefGoogle Scholar
  27. Vallerio, M., Dries, T., Lorenzo, C., Flavio, M., JanVan, I., & Filip, L. (2016). Robust multi-objective dynamic optimization of chemical processes using the Sigma Point method. Chemical Engineering Science, 140, 201–216.CrossRefGoogle Scholar
  28. Wenchao, Y., Yinzhi, Z., Liang, G., Xinyu, L., & Chunjiang, Z. (2016). Engineering design optimization using an improved local search based epsilon differential evolution algorithm. Journal of Intelligent Manufacturing,. doi: 10.1007/s10845-016-1199-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bilel Najlawi
    • 1
    Email author
  • Mohamed Nejlaoui
    • 1
  • Zouhaier Affi
    • 1
  • Lotfi Romdhane
    • 2
  1. 1.LGM, ENIMUniversity of MonastirMonastirTunisia
  2. 2.Department of Mechanical EngineeringAmerican University of SharjahSharjahUAE

Personalised recommendations