Journal of Intelligent Manufacturing

, Volume 30, Issue 2, pp 757–770 | Cite as

An artificial neural network approach for tool path generation in incremental sheet metal free-forming

  • Christoph HartmannEmail author
  • Daniel Opritescu
  • Wolfram Volk


This research considers a specific incremental sheet metal free-forming process, which allows for individualized component manufacturing. However, for a reasonable application in practice, an automation of the manual process is mandatory. Unfortunately, up to now, no general tool path generation strategies are available when free-forming processes are to be utilized. On this account, for the investigated driving process, a holistic concept for deriving tool paths for the production of sheet metal parts directly from a digital component model is presented adopting an artificial neural network architecture. Consequently, for the very first time an automated part production is possible in incremental sheet metal free-forming applications. For this, a suitable network input and output structure is designed. Balanced sample data sets are generated for appropriate training. An associated network topology is determined and undergoes a training and testing phase. The influence of different training algorithms, network configurations, as well as training sets have been studied in relation to a feedforward network structure with backpropagation. Finally, the proposed computer integrated manufacturing system is subject to validation and verification by automated sheet part production, which is followed by concluding remarks on the capabilities and limits of the concept.


Sheet metal processing Computer integrated manufacturing Flexible manufacturing systems Neural networks Learning systems 


  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., & Desbrun, M. (2003). Anisotropic polygonal remeshing. ACM Transactions on Graphics, 22, 485–493.CrossRefGoogle Scholar
  2. Arainz-Gonzlez, A., Fernndez-Valdivielso, A., Bustillo, A., & de Lacalle, L. (2016). Using artificial neural networks for the prediction of dimensional error on inclined surfaces manufactured by ball-end milling. International Journal of Advaced Manufacturing Technology, 83, 847–859.CrossRefGoogle Scholar
  3. ASCE. (2000). Artificial neural networks in hydrology. i: Preliminary concepts. Journal of Hydrologic Engineering, 5, 115–123.CrossRefGoogle Scholar
  4. Ashhab, M., Breitsprecher, T., & Wartzack, S. (2014). Neural network based modeling and optimization of deep drawing extrusion combined process. Journal of Intelligent Manufacturing, 25, 77–84.CrossRefGoogle Scholar
  5. Back, A., & Trappenberg, T. (2001). Selecting inputs for modeling using normalized higher order statistics and independent component analysis. IEEE Transactions on Neural Networks, 12, 612–617.CrossRefGoogle Scholar
  6. Basheer, I., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3–31.CrossRefGoogle Scholar
  7. Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5, 537–550.CrossRefGoogle Scholar
  8. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5, 349–359.CrossRefGoogle Scholar
  9. Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lévy, B., Bischoff, S., & Rössl, C. (2008). Geometric modeling based on polygonal meshes. Eurographics Course NotesGoogle Scholar
  10. Carreira-Perpinn, M. (1997). A review of dimension reduction techniques. Technical Report CS-96-06, Department of Computer Science, University of SheffieldGoogle Scholar
  11. Cohen-Steiner, D., & Morvan, JM. (2003). Restricted delaunay triangulations and normal cycle. In Proceedings of the 19th Annual Symposium on Computational Geometry, (pp. 312–321).Google Scholar
  12. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2, 303–314.CrossRefGoogle Scholar
  13. de Carmo, M. (1976). Differential geometry of curves and surfaces. Englewood Cliffs: Prentice-Hall.Google Scholar
  14. Dirksen, S. (2016). Dimensionality reduction with subgaussian matrices: A unified theory. Foundations of Computational Mathematics, 16, 1367–1396.CrossRefGoogle Scholar
  15. Fahlman, S. (1988). An empirical study of learning speed in backpropagation. Technical Report CMU-CS-88-162, Carnegie-Mellon University, PittsburghGoogle Scholar
  16. Floaster, M., & Hormann, K. (2005). Surface parameterization: A tutorial and Survey. Berlin: Springer.Google Scholar
  17. Griffin, J. (2015). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-015-1165-y.
  18. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.Google Scholar
  19. Hagan, M., Demuth, H., & Beale, M. (1996). Neural network design. Boston: PWS Publishing.Google Scholar
  20. Hecht-Nielsen, R. (1990). Neurocomputing. Boston: Addison-Wesley.Google Scholar
  21. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.
  22. Hoffmann, H., Neugebauer, R., & Spur, G. (2012). Handbuch umformen. Munich: Carl Hanser.CrossRefGoogle Scholar
  23. Hormann, K., Lévy, B., & Sheffer, A. (2007). Mesh parametrization: Theory and practice. Siggraph Course NotesGoogle Scholar
  24. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.CrossRefGoogle Scholar
  25. Huang, S., & Huang, Y. (1991). Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions on Neural Networks, 2, 47–55.CrossRefGoogle Scholar
  26. Hunt, K., Sbarbaro, D., Zbikowski, R., & Gawthrop, P. (1992). Neural networks for control systems—A survey. Automatica, 28, 1083–1112.CrossRefGoogle Scholar
  27. Hunt, K., Irwin, G., & Warwick, K. (1995). Neural network engineering in dynamic control systems. London: Springer.CrossRefGoogle Scholar
  28. Jadid, M., & Fairbairn, D. (1996). Neural-network applications in predicting moment-curvature parameters from experimental data. Engineering Applications of Artificial Intelligence, 9, 309–319.CrossRefGoogle Scholar
  29. Jamli, M., Ariffin, A., & Wahab, D. (2015). Incorporating feedforward neural network within finite element analysis for l-bending springback prediction. Expert Systems with Applications, 42, 2604–2614.CrossRefGoogle Scholar
  30. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. CIRP Annals of Manufacturing Technology, 54, 623–649.CrossRefGoogle Scholar
  31. Khan, M., Coenen, F., Dixon, C., El-Salhi, S., Penalva, M., & Rivero, A. (2014). An intelligent process model: Predicting springback in single point incremental forming. International Journal of Advaced Manufacturing Technology, 76, 2071–2082.CrossRefGoogle Scholar
  32. Lazoglu, I., Manav, C., & Murtezaoglu, Y. (2009). Tool path optimization for free form surface machining. CIRP Annals-Manufacturing Technology, 58, 101–104.CrossRefGoogle Scholar
  33. Lee, Y., Oh, S., & Kim, M. (1991). The effect of initial weights on premature saturation in backpropagation learning. In Proceedings of the International Joint Conference on Neural Networks, (pp. 765–770).Google Scholar
  34. Liu, G., Kadirkamanathan, V., & Billings, S. (1998). On-line identification of nonlinear systems using volterra polynomial basis function neural networks. Neural Networks, 11, 1645–1657.CrossRefGoogle Scholar
  35. Liu, N., Yang, H., Li, H., Yan, S., Zhang, H., & Tang, W. (2015). Bp artificial neural network modeling for accurate radius prediction and application in incremental in-plane bending. International Journal of Advaced Manufacturing Technology, 80, 971–984.CrossRefGoogle Scholar
  36. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.CrossRefGoogle Scholar
  37. Masters, T. (1993). Practical neural network recipes in C++. San Diego: Academic Press.Google Scholar
  38. Narendra, K. (1996). Neural networks for control: Theory and practice. Proceedings of the IEEE, 84, 1385–1406.CrossRefGoogle Scholar
  39. Narendra, K., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1, 4–27.CrossRefGoogle Scholar
  40. Nguyen, D., & Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In Proceedings of the International Joint Conference on Neural Networks, (pp. 21–26).Google Scholar
  41. Oberhofer, W., & Zimmerer, T. (1996). Wie Künstliche Neuronale Netze lernen: Ein Blick in die Black Box der Backpropagation Netzwerke. Regensburger Diskussionsbeiträge 287Google Scholar
  42. Opritescu, D., & Volk, W. (2015). Automated driving for individualized sheet metal part production—A neural network approach. Robotics and Computer-Integrated Manufacturing, 35, 144–150.CrossRefGoogle Scholar
  43. Pohlak, M., Majak, J., & Küttner, R. (2007). Manufacturability and limitations in incremental sheet forming. Proceedings of the Estonian Academy of Sciences and Engineering, 13, 129–139.Google Scholar
  44. Psaltis, D., Sideris, A., & Yamamura, A. (1988). A multilayered neural network controller. IEEE Control Systems Magazine, 8, 17–21.CrossRefGoogle Scholar
  45. Qattawi, A., Mayyas, A., Thiruvengadam, H., Kumar, V., Dongri, S., & Omar, M. (2014). Design considerations of flat patterns analysis techniques when applied for folding 3-d sheet metal geometries. Journal of Intelligent Manufacturing, 25, 109–128.CrossRefGoogle Scholar
  46. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The rprop algorithm. In Proceedings of the IEEE International Conference on Neural Networks, (pp. 586–591).Google Scholar
  47. Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by backpropagating errors. Nature, 323, 533–536.CrossRefGoogle Scholar
  48. Schmidthuber, J. (2014). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRefGoogle Scholar
  49. Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science, 44, 1464–1468.Google Scholar
  50. Sorzano, C., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques. arXiv:1403.2877.
  51. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overftting. Journal of Machine Learning Research, 15, 1929–1958.Google Scholar
  52. Taubin, G. (1995). Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings of the 5th International Conference on Computer Vision, (pp. 902–907).Google Scholar
  53. Tenenbaum, J., de Silva, V., & Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.CrossRefGoogle Scholar
  54. Upadhaya, B., & Eryureka, E. (1992). Application of neural network for sensor validation and plant monitoring. Nuclear Technology, 97, 170–176.CrossRefGoogle Scholar
  55. van der Maaten, L., & Postma, E. (2009). Dimensionality reduction: A comparative review. Technical Report TiCC TR 2009005, Tilburg centre for Creatice Computing, Tilburg UniversityGoogle Scholar
  56. Volk, W., Opritescu, D., Gritzmann, P., & Schmiedl, F. (2013). Automatisiertes Kopiertreiben Analyse und Katalogisierung von Bauteilen und Fertigungsstrategien. Hanover: European Research Association for Sheet Metal Working.Google Scholar
  57. Wang, T., Gao, H., & Qiu, J. (2016). A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Transactions on Neural Networks and Learning Systems, 27, 416–425.CrossRefGoogle Scholar
  58. Wintgen, P. (1982). Normal cycle and integral curvature for polyhedra in riemmannian manifolds. In G. Soos & J. Szenthe (Eds.), Differential geometry (pp. 805–816). Amsterdam: North-Holland.Google Scholar
  59. Zähle, M. (1986). Integral and current representations of federer’s curvature measures. Archiv der Mathematik, 46, 557–567.CrossRefGoogle Scholar
  60. Zeroudi, N., & Fontaine, M. (2015). Prediction of tool deflection and tool path compensation in ball-end milling. Journal of Intelligent Manufacturing, 26, 425–445.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christoph Hartmann
    • 1
    Email author
  • Daniel Opritescu
    • 1
  • Wolfram Volk
    • 1
  1. 1.Institute of Metal Forming and Casting (utg)Technische Universität MünchenMunichGermany

Personalised recommendations