Journal of Intelligent Manufacturing

, Volume 30, Issue 1, pp 229–239 | Cite as

A supervised sparsity-based wavelet feature for bearing fault diagnosis

  • Cong WangEmail author
  • Meng Gan
  • Chang’an Zhu


This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults.


Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis 



This work was supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2014CB049500 and the Key Technologies R&D Program of Anhui Province under Grant No. 1301021005.


  1. Afonso, M. V., Bioucas-Dias, J. M., & Figueiredo, M. A. T. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19(9), 2345–2356.CrossRefGoogle Scholar
  2. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRefGoogle Scholar
  3. Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209(1–2), 237–260.CrossRefGoogle Scholar
  4. Aydin, I., Karakose, M., & Akin, E. (2015). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing, 26(4), 717–729.CrossRefGoogle Scholar
  5. Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.CrossRefGoogle Scholar
  6. Bokoski, P., & Juricic, D. (2012). Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures. Mechanical Systems and Signal Processing, 31, 369–381.CrossRefGoogle Scholar
  7. Chandra, N. H., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72–73, 105–133.CrossRefGoogle Scholar
  8. Chen, S. S. B., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. Siam Review, 43(1), 129–159.CrossRefGoogle Scholar
  9. Coifman, R. R., & Wickerhauser, M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38(2), 713–718.CrossRefGoogle Scholar
  10. Ding, X. X., He, Q. B., & Luo, N. W. (2015). A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. Journal of Sound and Vibration, 335, 367–383.CrossRefGoogle Scholar
  11. Figueiredo, M. A. T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.CrossRefGoogle Scholar
  12. Gao, R. X., & Yan, R. (2006). Non-stationary signal processing for bearing health monitoring. International Journal of Manufacturing Research, 1(1), 18–40.CrossRefGoogle Scholar
  13. Gunn, R. N., Gunn, S. R., Turkheimer, F. E., Aston, J. A. D., & Cunningham, T. J. (2002). Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling. Journal of Cerebral Blood Flow and Metabolism, 22(12), 1425–1439.CrossRefGoogle Scholar
  14. He, W. P., Ding, Y., Zi, Y. Y., & Selesnick, I. W. (2016). Sparsity-based algorithm for detecting faults in rotating machines. Mechanical Systems and Signal Processing, 72–73, 46–64.CrossRefGoogle Scholar
  15. Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for large-scale l(1)-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–617.CrossRefGoogle Scholar
  16. Lei, Y. G., He, Z. J., & Zi, Y. Y. (2008). A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications, 35(4), 1593–1600.CrossRefGoogle Scholar
  17. Li, F. C., Meng, G., Ye, L., & Chen, P. (2008). Wavelet transform-based higher-order statistics for fault diagnosis in rolling element bearings. Journal of Vibration and Control, 14(11), 1691–1709.CrossRefGoogle Scholar
  18. Li, H. K., Lian, X. T., Guo, C., & Zhao, P. S. (2015). Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination. Journal of Intelligent Manufacturing, 26(1), 189–198.CrossRefGoogle Scholar
  19. Li, H. K., Wang, Y. H., Zhao, P. S., Zhang, X. W., & Zhou, P. L. (2015). Cutting tool operational reliability prediction based on acoustic emission and logistic regression model. Journal of Intelligent Manufacturing, 26(5), 923–931.CrossRefGoogle Scholar
  20. Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397–3415.Google Scholar
  21. Mallat, S. G. (1989). A theory for multiresolution signal decomposition—the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.CrossRefGoogle Scholar
  22. Mateos, G., Bazerque, J. A., & Giannakis, G. B. (2010). Distributed sparse linear regression. IEEE Transactions on Signal Processing, 58(10), 5262–5276.CrossRefGoogle Scholar
  23. Missoum, S., Vergez, C., & Doc, J. B. (2014). Explicit mapping of acoustic regimes for wind instruments. Journal of Sound and Vibration, 333(20), 5018–5029.CrossRefGoogle Scholar
  24. Mortada, M. A., Yacout, S., & Lakis, A. (2014). Fault diagnosis in power transformers using multi-class logical analysis of data. Journal of Intelligent Manufacturing, 25(6), 1429–1439.CrossRefGoogle Scholar
  25. Onan, A. (2016). Classifier and feature set ensembles for web page classification. Journal of Information Science, 42(2), 150–165.CrossRefGoogle Scholar
  26. Pavlidi, D., Griffin, A., Puigt, M., & Mouchtaris, A. (2013). Real-time multiple sound source localization and counting using a circular microphone array. IEEE Transactions on Audio Speech and Language Processing, 21(10), 2193–2206.CrossRefGoogle Scholar
  27. Rahmani, H., Huynh, D. Q., Mahmood, A., & Mian, A. (2016). Discriminative human action classification using locality-constrained linear coding. Pattern Recognition Letters, 72, 62–71.CrossRefGoogle Scholar
  28. Shukla, N., Ceglarek, D., & Tiwari, M. K. (2015). Key characteristics-based sensor distribution in multi-station assembly processes. Journal of Intelligent Manufacturing, 26(1), 43–58.CrossRefGoogle Scholar
  29. Siracusano, G., Lamonaca, F., Tomasello, R., Garesci, F., La Corte, A., Carni, D. L., et al. (2016). A framework for the damage evaluation of acoustic emission signals through Hilbert–Huang transform. Mechanical Systems and Signal Processing, 75, 109–122.CrossRefGoogle Scholar
  30. Sui, Y., Zhang, S. L., & Zhang, L. (2015). Robust visual tracking via sparsity-induced subspace learning. IEEE Transactions on Image Processing, 24(12), 4686–4700.CrossRefGoogle Scholar
  31. Wang, G. F., & Cui, Y. H. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24(6), 1085–1094.CrossRefGoogle Scholar
  32. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.CrossRefGoogle Scholar
  33. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.CrossRefGoogle Scholar
  34. Yan, R. Q., Gao, R. X., & Chen, X. F. (2014). Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1–15.CrossRefGoogle Scholar
  35. Yeganli, F., Nazzal, M., & Ozkaramanli, H. (2015). Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle. Signal Image and Video Processing, 9, 285–293.CrossRefGoogle Scholar
  36. Zarei, J., & Poshtan, J. (2007). Bearing fault detection using wavelet packet transform of induction motor stator current. Tribology International, 40(5), 763–769.CrossRefGoogle Scholar
  37. Zhang, H., Chen, X. F., Du, Z. H., Li, X., & Yan, R. Q. (2016). Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings. Journal of Sound and Vibration, 368, 223–248.CrossRefGoogle Scholar
  38. Zhang, Z. Y., Wang, Y., & Wang, K. S. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of China (USTC)HefeiPeople’s Republic of China

Personalised recommendations