Advertisement

A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning

  • Pai Zheng
  • Xun Xu
  • Sheng Quan Xie
Article

Abstract

Customer requirements (CRs) play a significant role in the product development process, especially in the early design stage. Quality function deployment (QFD), as a useful tool in customer-oriented product development, provides a systematic approach towards satisfying CRs. Customers are heterogeneous and their requirements are often vague, therefore, how to determine the relative importance ratings (RIRs) of CRs and eventually evaluate the final importance ratings is a critical step in the QFD product planning process. Aiming to improve the existing approaches by interpreting various CR preferences more objectively and accurately, this paper proposes a weighted interval rough number method. CRs are rated with interval numbers, rather than a crisp number, which is more flexible to adapt in real life; also, the fusion of customer heterogeneity is addressed by assigning different weights to customers based on several factors. The consistency of RIRs is maintained by the proposed procedures with design rules. A comparative study among fuzzy weighted average method, rough number method and the proposed method is conducted at last. The result shows that the proposed method is more suitable in determining the RIRs of CRs with vague information.

Keywords

Quality function deployment Rough set theory Fuzzy set theory Product planning Customer-centric design 

Notes

Acknowledgments

Authors wish to acknowledge the financial support provided by the China Scholarship Council and the University of Auckland Joint Scholarship.

References

  1. Akao, Y. (1972). New product development and quality assurance-quality deployment system. Standardization and Quality Control, 25(4), 7–14.Google Scholar
  2. Büyüközkan, G., Ertay, T., Kahraman, C., & Ruan, D. (2004). Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach. International Journal of Intelligent Systems, 19(5), 443–461.CrossRefGoogle Scholar
  3. Braglia, M., & Petroni, A. (1999). A management-support technique for the selection of rapid prototyping technologies. Journal of Industrial Technology, 15(4), 1–6.Google Scholar
  4. Buyukozkan, G., Feyzioglu, O., & Ruan, D. (2007). Fuzzy group decision-making to multiple preference formats in quality function deployment. Computers in Industry, 58(5), 392–402. doi: 10.1016/j.compind.2006.07.002.CrossRefGoogle Scholar
  5. Chan, L., Kao, H., & Wu, M. (1999). Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. International Journal of Production Research, 37(11), 2499–2518.CrossRefGoogle Scholar
  6. Chen, Y. Z., Fung, R. Y. K., & Tang, J. F. (2006). Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator. European Journal of Operational Research, 174(3), 1553–1566. doi: 10.1016/j.ejor.2004.12.026.CrossRefGoogle Scholar
  7. Chryssolouris, G., Pappas, M., Karabatsou, V., Mavrikios, D., & Alexopoulos, K. (2007). A shared VE for collaborative product development in manufacturing enterprises. In W. D. Li, S. K. Ong, A. Y. C. Nee, & C. A. McMahon (Eds.), Collaborative product design and manufacturing methodologies and applications (pp. 59–70). Springer London.Google Scholar
  8. Chuang, P.-T. (2001). Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. The International Journal of Advanced Manufacturing Technology, 18(11), 842–849.CrossRefGoogle Scholar
  9. Cohen, L., & Cohen, L. (1995). Quality function deployment: How to make QFD work for you. MA: Addison-Wesley Reading.Google Scholar
  10. Cooper, R. G., & Dreher, A. (2010). Voice-of-customer methods. Marketing Management, 19, 38–43.Google Scholar
  11. Durka, P. J., Kus, R., Zygierewicz, J., Michalska, M., Milanowski, P., Labecki, M., et al. (2012). User-centered design of brain-computer interfaces: OpenBCI.pl and BCI appliance. Bulletin of the Polish Academy of Sciences-Technical Sciences, 60(3), 427–431. doi: 10.2478/v10175-012-0054-1.
  12. Ertay, T., Büyüközkan, G., Kahraman, C., & Ruan, D. (2005). Quality function deployment implementation based on analytic network process with linguistic data: An application in automotive industry. Journal of Intelligent & Fuzzy Systems, 16(3), 221–232.Google Scholar
  13. Fleder, D., & Hosanagar, K. (2009). Blockbuster culture’s next rise or fall: The impact of recommender systems on sales diversity. Management Science, 55(5), 697–712. doi: 10.1287/mnsc.1080.0974.CrossRefGoogle Scholar
  14. Franceschini, F., Maisano, D., & Mastrogiacomo, L. (2015). Customer requirement prioritization on QFD: A new proposal based on the generalized Yager’s algorithm. Research in Engineering Design, 26(2), 171–187. doi: 10.1007/s00163-015-0191-2.CrossRefGoogle Scholar
  15. Geng, X., Chu, X., Xue, D., & Zhang, Z. (2010). An integrated approach for rating engineering characteristics’ final importance in product-service system development. Computers & Industrial Engineering, 59(4), 585–594.CrossRefGoogle Scholar
  16. Goncalves-Coelho, A. M. (2005). Improving the use of QFD with Axiomatic Design. Concurrent Engineering, 13(3), 233–239. doi: 10.1177/1063293x05056787.CrossRefGoogle Scholar
  17. Griffin, A., & Hauser, J. R. (1993). The voice of the customer. Marketing science, 12(1), 1–27.CrossRefGoogle Scholar
  18. Hauser, J. R., & Clausing, D. (1988). The house of quality. Harvard Business Review, 66(3).Google Scholar
  19. Ho, W. (2008). Integrated analytic hierarchy process and its applications-A literature review. European Journal of Operational Research, 186(1), 211–228.CrossRefGoogle Scholar
  20. Jiang, J. D., Xu, F., Zhao, Y. D., Zhang, L. B., & Sun, X. J. (2005). QFD in design for small agricultural machinery under mass customization. Proceedings of the 12th International Conference on Industrial Engineering and Engineering Management, vols 1 and 2: Modern Industrial Engineering and Innovation in Enterprise Management.Google Scholar
  21. Jin, Y. (2003). Advanced fuzzy systems design and applications (Vol. 112). Berlin: Springer.Google Scholar
  22. Kahraman, C., Ertay, T., & Buyukozkan, G. (2006). A fuzzy optimization model for QFD planning process using analytic network approach. European Journal of Operational Research, 171(2), 390–411. doi: 10.1016/j.ejor.2004.09.016.CrossRefGoogle Scholar
  23. Kaufmann, A., Gupta, M. M., & Kaufmann, A. (1985). Introduction to fuzzy arithmetic: Theory and applications. New York: Van Nostrand Reinhold Company.Google Scholar
  24. Khoo, L.-P., & Zhai, L.-Y. (2001). A prototype genetic algorithm-enhanced rough set-based rule induction system. Computers in Industry, 46(1), 95–106.CrossRefGoogle Scholar
  25. Khoo, L., Tor, S., & Zhai, L. (1999). A rough-set-based approach for classification and rule induction. The International Journal of Advanced Manufacturing Technology, 15(6), 438–444.CrossRefGoogle Scholar
  26. Kwong, C., & Bai, H. (2003). Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. Iie Transactions, 35(7), 619–626.CrossRefGoogle Scholar
  27. Kwong, C. K., & Bai, H. (2002). A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of Intelligent Manufacturing, 13(5), 367–377. doi: 10.1023/a:1019984626631.CrossRefGoogle Scholar
  28. Kwong, C. K., Ye, Y., Chen, Y., & Choy, K. L. (2011). A novel fuzzy group decision-making approach to prioritising engineering characteristics in QFD under uncertainties. International Journal of Production Research, 49(19), 5801–5820. doi: 10.1080/00207543.2010.520043.CrossRefGoogle Scholar
  29. Lai, X., Xie, M., Tan, K.-C., & Yang, B. (2008). Ranking of customer requirements in a competitive environment. Computers & Industrial Engineering, 54(2), 202–214.CrossRefGoogle Scholar
  30. Lee, A. H. I., Kang, H. Y., Yang, C. Y., & Lin, C. Y. (2010). An evaluation framework for product planning using FANP, QFD and multi-choice goal programming. International Journal of Production Research, 48(13), 3977–3997. doi: 10.1080/00207540902950845.CrossRefGoogle Scholar
  31. Li, B. M., Xie, S. Q., & Xu, X. (2011). Recent development of knowledge-based systems, methods and tools for One-of-a-Kind Production. Knowledge-Based Systems, 24(7), 1108–1119. doi: 10.1016/j.knosys.2011.05.005.CrossRefGoogle Scholar
  32. Li, Y.-L., Chin, K.-S., & Luo, X.-G. (2012). Determining the final priority ratings of customer requirements in product planning by MDBM and BSC. Expert Systems with Applications, 39(1), 1243–1255.CrossRefGoogle Scholar
  33. Li, Y., Tang, J., Luo, X., & Xu, J. (2009). An integrated method of rough set, Kano’s model and AHP for rating customer requirements’ final importance. Expert Systems with Applications, 36(3), 7045–7053.CrossRefGoogle Scholar
  34. Li, Y., Tang, J., Luo, X., Yao, J., & Xu, J. (2010). A quantitative methodology for acquiring engineering characteristics in PPHOQ. Expert Systems with Applications, 37(1), 187–193. doi: 10.1016/j.eswa.2009.05.006.CrossRefGoogle Scholar
  35. Li, Y. L., Tang, J. F., Chin, K. S., Jiang, Y. S., Han, Y., & Pu, Y. (2011). Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP. International Journal of Production Economics, 131(2), 575–586. doi: 10.1016/j.ijpe.2011.02.003.CrossRefGoogle Scholar
  36. Li, Y. L., Tang, J. F., & Luo, X. G. (2010). An ECI-based methodology for determining the final importance ratings of customer requirements in MP product improvement. [Article]. Expert Systems with Applications, 37(9), 6240–6250. doi: 10.1016/j.eswa.2010.02.100.CrossRefGoogle Scholar
  37. Liu, S. T. (2005). Rating design requirements in fuzzy quality function deployment via a mathematical programming approach. [Article]. International Journal of Production Research, 43(3), 497–513. doi: 10.1080/0020754042000270395.CrossRefGoogle Scholar
  38. Luo, X., Kwong, C., Tang, J., & Sun, F. (2015). QFD-based product planning with consumer choice analysis. Systems, Man, and Cybernetics: Systems, IEEE Transactions, 45, 454–461.Google Scholar
  39. Moore, R. E. (1966). Interval analysis (Vol. 4). Englewood Cliffs: Prentice-Hall.Google Scholar
  40. Mugge, R., Schoormans, J. P. L., & Schifferstein, H. N. J. (2009). Incorporating consumers in the design of their own products. The dimensions of product personalisation. [Article]. Codesign-International Journal of Cocreation in Design and the Arts, 5(2), 79–97. doi: 10.1080/15710880802666416.
  41. Nahm, Y. E., Ishikawa, H., & Inoue, M. (2013). New rating methods to prioritize customer requirements in QFD with incomplete customer preferences. International Journal of Advanced Manufacturing Technology, 65(9–12), 1587–1604. doi: 10.1007/s00170-012-4282-1.CrossRefGoogle Scholar
  42. Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341–356.CrossRefGoogle Scholar
  43. Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data (Vol. 9). Berlin: Springer.CrossRefGoogle Scholar
  44. Raharjo, H., Brombacher, A. C., & Xie, M. (2008). Dealing with subjectivity in early product design phase: A systematic approach to exploit Quality Function Deployment potentials. Computers & Industrial Engineering, 55(1), 253–278.CrossRefGoogle Scholar
  45. Raharjo, H., Xie, M., & Brombacher, A. C. (2011). A systematic methodology to deal with the dynamics of customer needs in Quality Function Deployment. [Article]. Expert Systems with Applications, 38(4), 3653–3662. doi: 10.1016/j.eswa.2010.09.021.CrossRefGoogle Scholar
  46. Ramanathan, R., & Jiang, Y. (2009). Incorporating cost and environmental factors in quality function deployment using data envelopment analysis. Omega-International Journal of Management Science, 37(3), 711–723. doi: 10.1016/j.omega.2007.12.003.CrossRefGoogle Scholar
  47. Rao, R. V., & Padmanabhan, K. (2007). Rapid prototyping process selection using graph theory and matrix approach. Journal of Materials Processing Technology, 194(1), 81–88.CrossRefGoogle Scholar
  48. Song, W., Ming, X., Han, Y., & Wu, Z. (2013). A rough set approach for evaluating vague customer requirement of industrial product-service system. International Journal of Production Research, 51(22), 6681–6701. doi: 10.1080/00207543.2013.832435.CrossRefGoogle Scholar
  49. Tseng, M. M., Jiao, R. J., & Wang, C. (2010). Design for mass personalization. Cirp Annals-Manufacturing Technology, 59(1), 175–178. doi: 10.1016/j.cirp.2010.03.097.CrossRefGoogle Scholar
  50. Wang, Y., & Tseng, M. M. (2011). Integrating comprehensive customer requirements into product design. Cirp Annals-Manufacturing Technology, 60(1), 175–178.CrossRefGoogle Scholar
  51. Xie, S. Q., & Tu, Y. L. (2006). Rapid one-of-a-kind product development. International Journal of Advanced Manufacturing Technology, 27(5–6), 421–430. doi: 10.1007/s00170-004-2225-1.CrossRefGoogle Scholar
  52. Xie, S. S., & Tu, Y. (2011). Rapid one-of-a-kind product development: Strategies, algorithms and tools. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  53. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.CrossRefGoogle Scholar
  54. Zhai, L.-Y., Khoo, L.-P., & Zhong, Z.-W. (2008). A rough set enhanced fuzzy approach to quality function deployment. International Journal of Advanced Manufacturing Technology, 37(5–6), 613–624. doi: 10.1007/s00170-007-0989-9.CrossRefGoogle Scholar
  55. Zhai, L. Y., Khoo, L. P., & Zhong, Z. W. (2009). A rough set based QFD approach to the management of imprecise design information in product development. Advanced Engineering Informatics, 23(2), 222–228. doi: 10.1016/j.aei.2008.10.010.CrossRefGoogle Scholar
  56. Zhai, L. Y., Khoo, L. P., & Zhong, Z. W. (2010). Towards a QFD-based expert system: A novel extension to fuzzy QFD methodology using rough set theory. Expert Systems with Applications, 37(12), 8888–8896. doi: 10.1016/j.eswa.2010.06.007.CrossRefGoogle Scholar
  57. Zhang, Z., & Chu, X. (2009). Fuzzy group decision-making for multi-format and multi-granularity linguistic judgments in quality function deployment. Expert Systems with Applications, 36(5), 9150–9158. doi: 10.1016/j.eswa.2008.12.027.CrossRefGoogle Scholar
  58. Zheng, P., Xu, X., & Xie, S. Q. (2015). Integrate product planning process of OKP companies in the cloud manufacturing environment. In S. Umeda, M. Nakano, H. Mizuyama, H. Hibino, D. Kiritsis, & G. von Cieminski (Eds.), Advances in production management systems: Innovative production management towards sustainable growth (pp. 420–426). Springer International Publishing.Google Scholar
  59. Zhou, F., Xu, Q., & Jiao, R. J. (2011). Fundamentals of product ecosystem design for user experience. Research in Engineering Design, 22(1), 43–61. doi: 10.1007/s00163-010-0096-z.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations