Advertisement

Journal of Intelligent Manufacturing

, Volume 30, Issue 8, pp 2981–2997 | Cite as

Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system

  • M’hammed SahnounEmail author
  • David Baudry
  • Navonil Mustafee
  • Anne Louis
  • Philip Andi Smart
  • Phil Godsiff
  • Belahcene Mazari
Article

Abstract

Maintenance of offshore wind turbines is a complex and costly undertaking which acts as a barrier to the development of this source of energy. Factors such as the size of the turbines, the size of the wind farms, their distance from the coast and meteorological conditions make it difficult for the stakeholders to select the optimal maintenance strategy. With the objective of reducing costs and duration of such operations it is important that new maintenance techniques are investigated. In this paper we propose a hybrid model of maintenance that is based on multi-agent systems; this allows for the modelling of systems with dynamic interactions between multiple parts. A multi-criteria decision algorithm has been developed to allow analysis and selection of different maintenance strategies. A cost model that includes maintenance action cost, energy loss and installation of monitoring system cost has been presented. For the purposes of this research we have developed a simulator using NetLogo software and have provided experimental results. The results show that employing the proposed hybrid maintenance strategy could increase wind farm productivity and reduce maintenance cost.

Keywords

Offshore wind turbine Renewable energy Maintenance Failure modes Multi-agent systems Simulation 

Notes

Acknowledgments

Acknowledgement is made to European Union for the support of this research through the European Program INTERREG IVA France-Channel-UK by funding project entitled MER Innovate.

References

  1. Ainslie, J. F. (1988). Calculating the flowfield in the wake of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 27(1), 213–224.CrossRefGoogle Scholar
  2. Ammara, I., Leclerc, C., & Masson, C. (2002). A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. Journal of Solar Energy Engineering, 124(4), 345–356.CrossRefGoogle Scholar
  3. Astariz, S., Perez-Collazo, C., Abanades, J., & Iglesias, G. (2015). Co-located wind-wave farm synergies (operation & maintenance): A case study. Energy Conversion and Management, 91, 63–75.CrossRefGoogle Scholar
  4. Babu, J. R., & Jithesh, S. (2008). Breakdown risks in wind energy turbines. Pravartak, the Journal of Insurance and risk Management from National Insurance Academy, Pun, 3, 3–23.Google Scholar
  5. Besnard, F., Fischer, K., & Tjernberg, L. B. (2013). A model for the optimization of the maintenance support organization for offshore wind farms. Sustainable Energy, IEEE Transactions on, 4(2), 443–450.CrossRefGoogle Scholar
  6. Braam, H., & Verbruggen, T. W. (2000). R & D NEEDS FOR O & M OF WIND TURBINES Google Scholar
  7. Brennan, F. (2013). Risk based maintenance for offshore wind structures. Procedia CIRP, 11, 296–300.CrossRefGoogle Scholar
  8. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. Chichester: Wiley.CrossRefGoogle Scholar
  9. Byon, E., Ntaimo, L., & Ding, Y. (2010). Optimal maintenance strategies for wind turbine systems under stochastic weather conditions. Reliability, IEEE Transactions on, 59(2), 393–404.CrossRefGoogle Scholar
  10. Byon, E., Pérez, E., Ding, Y., & Ntaimo, L. (2011). Simulation of wind farm operations and maintenance using discrete event system specification. Simulation, 87(12), 1093–1117.CrossRefGoogle Scholar
  11. Cunha, P., Duarte, J. C., & Alting, L. (2004). Development of a productive service module based on a life cycle perspective of maintenance issues. CIRP Annals-Manufacturing Technology, 53(1), 13–16.CrossRefGoogle Scholar
  12. Dahane, M., Sahnoun, M., Bettayeb, B., Baudry, D., & Boudhar, H. (2015) Impact of spare parts remanufacturing on the operation and maintenance performance of offshore wind turbines: A multi-agent approach. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-015-1154-1 CrossRefGoogle Scholar
  13. Dimeas, A. L., & Hatziargyriou, N. D. (2005). Operation of a multiagent system for microgrid control. IEEE Transactions on Power Systems PWRS, 20(3), 1447.CrossRefGoogle Scholar
  14. Energy, C. (2014). The basic components of a turbine. http://www.coriolis-energy.com/wind_energy/wind_technology.html
  15. Fécamp, E. D. P. D. (2013). Biln carbone du parc éolien en mer au large de fécamp Google Scholar
  16. Feijòo, A. E., Cidràs, J., Dornelas, J. L. G. (1999). Wind speed simulation in wind farms for steady–state security assessment of electrical power systems. IEEE Transactions on Energy conversion, 14(4), 1582–1588.CrossRefGoogle Scholar
  17. Fischer, K., Besnard, F., & Bertling, L. (2012). Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience. Energy Conversion, IEEE Transactions on, 27(1), 184–195.CrossRefGoogle Scholar
  18. Gundegjerde, C., Halvorsen, I. B., Halvorsen-Weare, E. E., Hvattum, L. M., & Nonås, L. M. (2015). A stochastic fleet size and mix model for maintenance operations at offshore wind farms. Transportation Research Part C: Emerging Technologies, 52, 74–92.CrossRefGoogle Scholar
  19. Haddad, G., Sandborn, P., & Pecht, M. (2014). Using maintenance options to maximize the benefits of prognostics for wind farms. Wind Energy, 17(5), 775–791.CrossRefGoogle Scholar
  20. Hau, E., & Von Renouard, H. (2013). Wind turbines: Fundamentals, technologies, application, economics. Berlin: Springer.CrossRefGoogle Scholar
  21. Henderson, A. R., Morgan, C., Smith, H. C., Barthelmie, R. J., & Boesmans, B. (2003). Offshore wind energy in Europe—a review of the state-of-the-art. Wind energy, 6(1), 35–52.CrossRefGoogle Scholar
  22. Herbert, G. J., Iniyan, S., & Amutha, D. (2014). A review of technical issues on the development of wind farms. Renewable and Sustainable Energy Reviews, 32, 619–641.CrossRefGoogle Scholar
  23. Hyers, R., McGowan, J., Sullivan, K., Manwell, J., & Syrett, B. (2006). Condition monitoring and prognosis of utility scale wind turbines. Energy Materials, 1(3), 187–203.CrossRefGoogle Scholar
  24. Ivan Pineda, S. A., Moccia, J., & Wilkes, J. (2014). Wind in power 2013 (February):1–12.Google Scholar
  25. Jensen, N. O. (1983). A note on wind generator interaction Google Scholar
  26. Karki, R., & Patel, J. (2009). Reliability assessment of a wind power delivery system. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(1), 51–58. doi: 10.1243/1748006XJRR218.CrossRefGoogle Scholar
  27. Kim, H., Singh, C., & Sprintson, A. (2012). Simulation and estimation of reliability in a wind farm considering the wake effect. Sustainable Energy, IEEE Transactions on, 3(2), 274–282.CrossRefGoogle Scholar
  28. Kooijman, H., Lindenburg, C., Winkelaar, D., & van der Hooft, E. (2003). Dowec 6 mw pre-design. Energy Research Center of the Netherlands (ECN).Google Scholar
  29. Larsen, G. C. (1988). A simple wake calculation procedure (Risø-M; No. 2760). http://orbit.dtu.dk/files/55567186/ris_m_2760.pdf.
  30. Lau, B. C. P., Ma E. W. M., & Pecht, M. (2012). Review of offshore wind turbine failures and fault prognostic methods. In Proceedings of the IEEE 2012 prognostics and system health management conference (PHM-2012 Beijing) (pp. 1–5). doi: 10.1109/PHM.2012.6228954
  31. Liyanage, J. P. (2008). Integrated e-operations-e-maintenance: Applications in north sea offshore assets. In Complex system maintenance handbook (pp. 585–609). Springer.Google Scholar
  32. Lu, B., Li, Y., Wu, X., & Yang, Z. (2009). A review of recent advances in wind turbine condition monitoring and fault diagnosis. In Power electronics and machines in wind applications, 2009 (PEMWA 2009) (pp. 1–7). IEEE.Google Scholar
  33. Mustafee, N., Sahnoun, M., Smart, A., & Godsiff, P. (2015). An application of distributed simulation for hybrid modeling of offshore wind farms. In Proceedings of the 2015 ACM SIGSIM/PADS conference on principles of advanced discrete simulation, June 10–12, 2015, London (pp.171–172). New York, NY: ACM. doi: 10.1145/2769458.2769492.
  34. Nielsen, J. J., & Sørensen, J. D. (2011). On risk-based operation and maintenance of offshore wind turbine components. Reliability Engineering & System Safety, 96(1), 218–229.CrossRefGoogle Scholar
  35. Nilsson, J., & Bertling, L. (2007). Maintenance management of wind power systems using condition monitoring systems mdash;life cycle cost analysis for two case studies. Energy Conversion, IEEE Transactions on, 22(1), 223–229. doi: 10.1109/TEC.2006.889623.CrossRefGoogle Scholar
  36. Palanci, A. (2011). Leak-free hydraulic fittings prevent vibration failure. Windpower Engineering for Parker Hannifin. Cleveland: WTWH Media, Inc.Google Scholar
  37. Pérez, M., García, E., Morant, F., Correcher, A., & Quiles, E. (2010). Optimal maintenance system for offshore wind turbines. In International conference on renewable energies and power quality (ICREPQ10). Granada (Spain), 23th to 25th March.Google Scholar
  38. Perveen, R., Kishor, N., & Mohanty, S. R. (2014). Off-shore wind farm development: Present status and challenges. Renewable and Sustainable Energy Reviews, 29, 780–792.CrossRefGoogle Scholar
  39. Petković, D., Ab Hamid, S. H., Ćojbašić, Ž., & Pavlović, N. T. (2014). Adapting project management method and anfis strategy for variables selection and analyzing wind turbine wake effect. Natural Hazards, 74(2), 463–475. Google Scholar
  40. Radakovič, M., Obitko, M., & Mařík, V. (2012). Dynamic explicitly specified behaviors in distributed agent-based industrial solutions. Journal of Intelligent Manufacturing, 23(6), 2601–2621.Google Scholar
  41. Rademakers, L., Braam, H., Zaaijer, M. B., & Energy, S. W. (2003). Assessment and optimisation of operation and maintenance of offshore wind turbines.Google Scholar
  42. Sahnoun, M., Baudry, D., Louis, A., & Mazari, B. (2014a) Modelisation d’un plan de maintenance basee sur les systemes multi-agents pour leseoliennes offshore.Google Scholar
  43. Sahnoun, M., Bettayeb, B., Bassetto, S. J., & Tollenaere, M. (2014b). Simulation-based optimization of sampling plans to reduce inspections while mastering the risk exposure in semiconductor manufacturing. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-014-0956-x CrossRefGoogle Scholar
  44. Sahnoun, M., Godsiff, P., Baudry, D., Louis, A., & Mazari, B. (2014c) Modelling of maintenance strategy of offshore wind farms based multi-agent system. In CIE44 & ISSM14 (44th international conference on computers & industrial engineering & 9th international symposiom on intelligent manufacturing and service systems) (591, pp. 2406–2420).Google Scholar
  45. Santos, P., Maudes, J., & Bustillo, A. (2015). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-015-1110-0 CrossRefGoogle Scholar
  46. Sheng, S. (2013). Report on wind turbine subsystem reliability–a survey of various databases. National Renewable Energy Laboratory, Golden, CO, Tech Rep NREL/PR-5000-59111.Google Scholar
  47. Stenberg, A., & Holttinen, H. (2010). Analysing failure statistics of wind turbines in finland. In European wind energy conference (pp. 20–23).Google Scholar
  48. Tavner, P. (2012). Offshore wind turbines: Reliability, availability & maintenance. IET Renewable Energy Series.Google Scholar
  49. Taylor, J. H., Sayda, & A. F. (2008). Prototype design of a multi-agent system for integrated control and asset management of petroleum production facilities. In American control conference (pp. 4350–4357). IEEE.Google Scholar
  50. Thornton, E. B., & Guza, R. (1983). Transformation of wave height distribution. Journal of Geophysical Research: Oceans (1978–2012), 88(C10), 5925–5938.CrossRefGoogle Scholar
  51. Tian, Z., Lin, D., & Wu, B. (2012). Condition based maintenance optimization considering multiple objectives. Journal of Intelligent Manufacturing, 23(2), 333–340.CrossRefGoogle Scholar
  52. Tisue, S., & Wilensky, U. (2004). Netlogo: A simple environment for modeling complexity. In International conference on complex systems (pp. 16–21).Google Scholar
  53. Trappey, A., Trappey, C., & Ni, W. C. (2013). A multi-agent collaborative maintenance platform applying game theory negotiation strategies. Journal of Intelligent Manufacturing, 24(3), 613–623. doi: 10.1007/s10845-011-0606-5.CrossRefGoogle Scholar
  54. Van de Pieterman, R., Braam, H., Obdam, T., Rademakers, L., & van der Zee, T. (2011). Optimisation of maintenance strategies for offshore wind farms. In The offshore 2011 conference Google Scholar
  55. Zhang, X., & Wang, W. (2009). Wind farm and wake effect modeling for simulation of a studied power system. In Power systems conference and exposition. PSCE’09 (pp. 1–6). IEEE: IEEE/PES.Google Scholar
  56. Zhou, W., Yang, H., & Fang, Z. (2006). Wind power potential and characteristic analysis of the pearl river delta region, china. Renewable Energy, 31(6), 739–753. doi: 10.1016/j.renene.2005.05.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M’hammed Sahnoun
    • 1
    Email author
  • David Baudry
    • 2
  • Navonil Mustafee
    • 3
  • Anne Louis
    • 1
  • Philip Andi Smart
    • 3
  • Phil Godsiff
    • 3
  • Belahcene Mazari
    • 1
  1. 1.CESI – IRISE LaboratoryMont-Saint-AignanFrance
  2. 2.CESI – LUSINE LaboratoryMont-Saint-AignanFrance
  3. 3.Centre for Innovation and Service Research (ISR)University of ExeterExeterUK

Personalised recommendations