Advertisement

Journal of Intelligent Manufacturing

, Volume 28, Issue 6, pp 1317–1336 | Cite as

Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization

  • Ali Derakhshan AslEmail author
  • Kuan Yew Wong
Article

Abstract

Facility layout problems deal with layout of facilities or departments in a shop floor. This article studies unequal-area static facility layout problems in order to minimize the sum of the material handling costs and unequal-area dynamic facility layout problems so as to minimize the sum of the material handling costs and rearrangement costs. Unequal-area static and dynamic facility layout problems are NP-hard. Therefore, a modified particle swarm optimization was suggested to solve them where the departments have fixed shapes and areas throughout the time horizon. The modified particle swarm optimization was tested using the available problem instances chosen from the literature. The proposed algorithm applied two local search methods and the department swapping method to improve the quality of solutions and to prevent local optima for dynamic and static problems. It also utilized the period swapping method to improve the solutions for dynamic problems. The results showed that the proposed algorithm has created encouraging layouts in comparison with other approaches.

Keywords

Unequal-area facility layout problems Static facility layout problems Dynamic facility layout problems Particle swarm optimization 

References

  1. Armour, G. C., & Buffa, E. S. (1963). A heuristic algorithm and simulation approach to relative location of facilities. Management Science, 9(2), 294–309. doi: 10.1287/mnsc.9.2.294.CrossRefGoogle Scholar
  2. Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. doi: 10.1016/j.arcontrol.2007.04.001.CrossRefGoogle Scholar
  3. Dunker, T., Radons, G., & Westkamper, E. (2005). Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem—Discrete optimization. European Journal of Operational Research, 165(1), 55–69. doi: 10.1016/j.ejor.2003.01.002.CrossRefGoogle Scholar
  4. Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction. Chichester: Wiley.CrossRefGoogle Scholar
  5. Heragu, S. S., & Kusiak, A. (1991). Efficient models for the facility layout problem. European Journal of Operational Research, 53(1), 1–13. doi: 10.1016/0377-2217(91)90088-D.CrossRefGoogle Scholar
  6. Imam, M. H., & Mir, M. (1989). Nonlinear programming approach to automated topology optimization. Computer-Aided Design, 21(2), 107–115. doi: 10.1016/0010-4485(89)90146-2.CrossRefGoogle Scholar
  7. Imam, M. H., & Mir, M. (1993). Automated layout of facilities of unequal areas. Computers and Industrial Engineering, 24(3), 355–366. doi: 10.1016/0360-8352(93)90032-S.CrossRefGoogle Scholar
  8. Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279–4293. doi: 10.1080/00207543.2011.613863.CrossRefGoogle Scholar
  9. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In The IEEE international conference on neural networks, Perth, WA (pp. 1942–1948).Google Scholar
  10. Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: Journal of the Econometric Society, 25(1), 53–76. doi: 10.2307/1907742.CrossRefGoogle Scholar
  11. Lacksonen, T. A. (1994). Static and dynamic layout problems with varying areas. Journal of the Operational Research Society, 45(1), 59–69. doi: 10.2307/2583951.CrossRefGoogle Scholar
  12. Lacksonen, T. A. (1997). Preprocessing for static and dynamic facility layout problems. International Journal of Production Research, 35(4), 1095–1106. doi: 10.1080/002075497195560.CrossRefGoogle Scholar
  13. Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5–8), 929–943. doi: 10.1007/s00170-012-4229-6.Google Scholar
  14. McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171–182. doi: 10.1016/j.ejor.2009.02.028.CrossRefGoogle Scholar
  15. Mir, M., & Imam, M. (2001). A hybrid optimization approach for layout design of unequal-area facilities. Computers and Industrial Engineering, 39(1–2), 49–63. doi: 10.1016/S0360-8352(00)00065-6.CrossRefGoogle Scholar
  16. Montreuil, B., & Venkatadri, U. (1991). Strategic interpolative design of dynamic manufacturing systems layouts. Management Science, 37(6), 682–694. doi: 10.1287/mnsc.37.6.682.CrossRefGoogle Scholar
  17. Moslemipour, G., Lee, T. S., & Rilling, D. (2012). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1–4), 11–27. doi: 10.1007/s00170-011-3614-x.CrossRefGoogle Scholar
  18. Rosenblatt, M. J. (1986). The dynamics of plant layout. Management Science, 32(1), 76–86. doi: 10.1287/mnsc.32.1.76.CrossRefGoogle Scholar
  19. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities Planning. New York: Wiley.Google Scholar
  20. Xiao, Y., Seo, Y., & Seo, M. (2013). A two-step heuristic algorithm for layout design of unequal-sized facilities with input/output points. International Journal of Production Research, 51(14), 4200–4222. doi: 10.1080/00207543.2012.752589.CrossRefGoogle Scholar
  21. Yang, T., & Peters, B. A. (1998). Flexible machine layout design for dynamic and uncertain production environments. European Journal of Operational Research, 108(1), 49–64. doi: 10.1016/S0377-2217(97)00220-8.CrossRefGoogle Scholar
  22. Yildiz, A. R., & Solanki, K. N. (2012). Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. The International Journal of Advanced Manufacturing Technology, 59(1–4), 367–376. doi: 10.1007/s00170-011-3496-y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Manufacturing and Industrial Engineering, Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaUTM SkudaiMalaysia

Personalised recommendations