Advertisement

Journal of Intelligent Manufacturing

, Volume 27, Issue 6, pp 1171–1190 | Cite as

A particle swarm approach for multi-objective optimization of electrical discharge machining process

  • Chinmaya P. Mohanty
  • Siba Sankar MahapatraEmail author
  • Manas Ranjan Singh
Article

Abstract

This paper proposes an experimental investigation and optimization of various machining parameters for the die-sinking electrical discharge machining (EDM) process using a multi-objective particle swarm (MOPSO) algorithm. A Box–Behnken design of response surface methodology has been adopted to estimate the effect of machining parameters on the responses. The responses used in the analysis are material removal rate, electrode wear ratio, surface roughness and radial overcut. The machining parameters considered in the study are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and tool material. Fifty four experimental runs are conducted using Inconel 718 super alloy as work piece material and the influence of parameters on each response is analysed. It is observed that tool material, discharge current and pulse-on-time have significant effect on machinability characteristics of Inconel 718. Finally, a novel MOPSO algorithm has been proposed for simultaneous optimization of multiple responses. Mutation operator, predominantly used in genetic algorithm, has been introduced in the MOPSO algorithm to avoid premature convergence. The Pareto-optimal solutions obtained through MOPSO have been ranked by the composite scores obtained through maximum deviation theory to avoid subjectiveness and impreciseness in the decision making. The analysis offers useful information for controlling the machining parameters to improve the accuracy of the EDMed components.

Keywords

Electrical discharge machining Maximum deviation theory Multi-objective particle swarm optimization Radial overcut Surface roughness 

References

  1. Alvarez-Benitez, J. E., Everson, R. M. & Fieldsend, J. E. (2005). A MOPSO algorithm based exclusively on pareto dominance concepts. In: C. A. C. Coello, A. H. Aguirre, & E. Zitzler (eds). Evolutionary multi-criterion optimization. Lecture Notes in Computer Science (vol. 3410, pp. 459–473).Google Scholar
  2. Assarzadeh, S., & Ghoreishi, M. (2013). Statistical modelling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC /6%Co). Proceedings of the Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM), 6, 463–468.Google Scholar
  3. Bachlaus, M., Pandey, M. K., Mahajan, C., Shankar, R., & Tiwari, M. K. (2008). Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach. Journal of Intelligent Manufacturing, 19(6), 747–761.CrossRefGoogle Scholar
  4. Belmecheri, F., Prins, C., Yalaoui, F., & Amodeo, L. (2013). Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4), 775–789.CrossRefGoogle Scholar
  5. Beri, N., Kumar, A., Maheshwari, S., & Sharma, C. (2011). Optimisation of electrical discharge machining process with CuW powder metallurgy electrode using grey relation theory. International Journal of Machining and Machinability of Materials, 9(1/2), 103–115. doi: 10.1504/IJMMM.2011.038163.CrossRefGoogle Scholar
  6. Brandstatter, B., & Baumgartner, U. (2002). Particle swarm optimization mass-spring system analogon. IEEE Transactions on Magnetics, 38(2), 997–1000.CrossRefGoogle Scholar
  7. Chen, Y., & Mahdivian, S. M. (2000). Analysis of electro-discharge machining process and its comparison with experiments. Journal of Material Processing Technology, 104(1–2), 150–157.CrossRefGoogle Scholar
  8. Coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.CrossRefGoogle Scholar
  9. Das, S., Klotz, M., & Klocke, F. (2003). EDM simulation: Finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 142(2), 434–451.CrossRefGoogle Scholar
  10. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Transaction Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  11. Dewangan, S., & Biswas, C. K. (2013). Optimisation of machining parameters using grey relation analysis for EDM with impulse flushing. International Journal of Mechatronics and Manufacturing Systems, 6(2), 144–158.CrossRefGoogle Scholar
  12. Dhar, S., Purohit, R., Saini, N., Sharma, A., & Kumar, G. H. (2007). Mathematical modeling of electric discharge machining of cast Al-4Cu-6Si alloy-10 wt.% SICP composites. Journal of Materials Processing Technology, 194(1–3), 24–29.CrossRefGoogle Scholar
  13. Dong, Y., Tang, J., Xu, B., & Wang, D. (2005). An application of swarm optimization to nonlinear programming. Computer and Mathematics with Applications, 49(11–12), 1655–1668.CrossRefGoogle Scholar
  14. Ebrahimipour, V., Haeri, A., Sheikhalishahi, M., & Asadzadeh, S. M. (2012). Application of multi-objective particle swarm optimization to solve a fuzzy multi-objective reliability redundancy allocation problem. Journal of Safety Engineering, 1(2), 26–38.Google Scholar
  15. Elbeltagi, E., Tarek, H., & Donald, G. (2005). Comparison among five evolutionary based optimization algorithms. Advanced Engineering Informatics, 19(1), 43–53.CrossRefGoogle Scholar
  16. Fieldsend, J. E. & Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In 2002 U.K. workshop on computational intelligence (pp. 34–44).Google Scholar
  17. Gao, Q., Zhang, Q. H., Su, S. P., & Zhang, J. H. (2008). Parameter optimization model in electrical discharge machining process. Journal of Zhejiang University Science, 9(1), 104–108.CrossRefGoogle Scholar
  18. Ghoreishi, M., & Tabari, C. (2007). Investigation into the effect of voltage excitation of pre-ignition spark pulse on the electro-discharge machining (EDM) process. Materials and Manufacturing Processes, 22(7–8), 833–841.CrossRefGoogle Scholar
  19. Gill, S. S., & Singh, J. (2010). Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling. Materials and Manufacturing Processes, 25(6), 378–385.CrossRefGoogle Scholar
  20. Golshan, A., Gohari, S., & Ayob, A. (2012). Multi-objective optimisation of electrical discharge machining of metal matrix composite Al/SiC using non-dominated sorting genetic algorithm. International Journal of Mechatronics and Manufacturing Systems, 5(5/6), 385–398.CrossRefGoogle Scholar
  21. Jafferson, J. M., & Hariharan, P. (2013). Machining performance of cryogenically treated electrodes in microelectric discharge machining: A comparative experimental study. Materials and Manufacturing Processes, 28(4), 397–402.CrossRefGoogle Scholar
  22. Joshi, S. N., & Pande, S. S. (2009). Development of an intelligent process model for EDM. International Journal of Advanced Manufacturing Technology, 45(3–4), 300–317.CrossRefGoogle Scholar
  23. Joshi, S. N., & Pande, S. S. (2010). Thermo-physical modelling of die-sinking EDM process. Journal of Manufacturing Processes, 12(1), 45–56.CrossRefGoogle Scholar
  24. Joshi, S. N., & Pande, S. S. (2011). Intelligent process modeling and optimization of die-sinking electric discharge machining. Applied Soft Computing, 11(2), 2743–2755.CrossRefGoogle Scholar
  25. Kapoor, J., Singh, S., & Khamba, J. S. (2012). Effect of cryogenic treated brass wire electrode on material removal rate in wire electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(11), 2750–2758.Google Scholar
  26. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of IEEE International Conference on Neural Network, Washington, USA, November/December, 4, 1942–1948.CrossRefGoogle Scholar
  27. Kim, B., & Son, S. (2012). A probability matrix based particle swarm optimization for the capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23(4), 1119–1126.CrossRefGoogle Scholar
  28. Kumar, S., Singh, R., Singh, T. P., & Sethi, B. L. (2009). Surface modification by electrical discharge machining: A review. Journal of Materials Processing Technology, 209(8), 3675–3687.CrossRefGoogle Scholar
  29. Kumar, A., Maheshwari, S., Sharma, C., & Beri, N. (2012a). Machining efficiency evaluation of cryogenically treated copper electrode in additive mixed EDM. Materials and Manufacturing Processes, 27(10), 1051–1058.CrossRefGoogle Scholar
  30. Kumar, N., Kumar, L., Tewatia, H., & Yadav, R. (2012b). Comparative study for MRR on die-sinking EDM using electrode of copper and graphite. International Journal of Advanced Technology & Engineering Research, 2(2), 170–174.Google Scholar
  31. Kuppan, P., Narayanan, S., & Rajadurai, A. (2011). Effect of process parameters on material removal rate and surface roughness in electric discharge drilling of Inconel 718 using graphite electrode. International Journal of Manufacturing Technology and Management, 23(3/4), 214–233.CrossRefGoogle Scholar
  32. Kuriakose, S., & Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170(1–2), 133–141.CrossRefGoogle Scholar
  33. Lee, S. H., & Li, X. P. (2001). Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. Journal of Material Process and Technology, 115(3), 344–358.CrossRefGoogle Scholar
  34. Li, X. (2004). Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness. In Lecture Notes in Computer Science, Genetic and Evolutionary Computation—GECCO (vol. 3102, pp. 117–128). Editor in chief: Kalyanmoy Deb.Google Scholar
  35. Lin, J. L., Wang, K. S., Yan, B. H., & Tarng, Y. S. (2000). Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. Journal of Materials Processing Technology, 102(1–3), 48–55.Google Scholar
  36. Mahapatra, S. S., & Patnaik, A. (2007). Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. The International Journal of Advanced Manufacturing Technology, 34(9–10), 911–925.CrossRefGoogle Scholar
  37. Markopoulos, A. P., Manolakos, D. E., & Vaxevanidis, N. M. (2008). Artificial neural network models for the prediction of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing, 19(3), 283–292.CrossRefGoogle Scholar
  38. Meena, V. K., Azad, M. S., & Mitra, S. (2012). Effect of flushing condition on deep hole micro-EDM drilling. International Journal of Machining and Machinability of Materials, 12(4), 308–320.CrossRefGoogle Scholar
  39. Modares, H., Alfi, A., & Sistani, M. B. N. (2011). Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Engineering Applications of Artificial Intelligence, 23(7), 1105–1111.CrossRefGoogle Scholar
  40. Mostaghim, S. & Teich, J. (2003). Strategies for finding good local guides in multi-objective particle swarm optimization. In Proceedings of the 2003 IEEE swarm intelligence symposium (pp. 26–33). doi: 10.1109/SIS.2003.1202243.
  41. Natsu, W., Shimoyamada, M., & Kunieda, M. (2006). Study on expansion process of EDM arc plasma. JSME International Journal Series C, 49(2), 600–605.CrossRefGoogle Scholar
  42. Pellicer, N., Joaquim, C., & Delgad, J. (2011). Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel. Journal of Intelligent Manufacturing, 22(4), 575–584.CrossRefGoogle Scholar
  43. Panda, D. K. (2008). Study of thermal stresses induced surface damage under growing plasma channel in electro-discharge machining. Journal of Material Processing and Technology, 202(1–3), 86–95.CrossRefGoogle Scholar
  44. Panda, D. K., & Bhoi, R. J. (2005). Artificial neural network prediction of material removal rate in EDM. Materials and Manufacturing Processes, 20(4), 645–672.CrossRefGoogle Scholar
  45. Pant, M., Radha, T. & Singh, V.P. (2007). A simple diversity guided particle swarm optimization. IEEE congress on Evolutionary Computation (CEC), 25–28 Sept. Singapore (pp. 3294–3299).Google Scholar
  46. Prabhu, S., & Vinayagam, B. K. (2013). Multi objective optimisation of SWCNT-based electrical discharge machining process using grey relational and fuzzy logic analysis. International Journal of Machining and Machinability of Materials, 13(4), 439–463.CrossRefGoogle Scholar
  47. Pradhan, M. K., & Biswas, C. K. (2010). Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel. International Journal of Advanced Manufacturing Technology, 50(5–8), 591–610.CrossRefGoogle Scholar
  48. Rao, G. K. M., Janardhana, G. R., Rao, D. H., & Rao, M. S. (2008). Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. ARPN Journal of Engineering and Applied Sciences, 3(1), 1512–1520.Google Scholar
  49. Raquel, C. R. & Naval, P.C. (2005). An effective use of crowding distance in multiobjective particle swarm optimization. In GECCO ’05 Proceedings of the 2005 conference on genetic and evolutionary computation, New York, USA (pp. 257–264).Google Scholar
  50. Sen, M., & Shan, H. S. (2007). Electro jet drilling using hybrid NNGA approach. Robotics and Computer Integrated Manufacturing, 23(1), 17–24.CrossRefGoogle Scholar
  51. Senthilkumar, V., & Reddy, M. C. (2012). Performance analysis of Cu-B4C metal matrix composite as an EDM electrode. International Journal of Machining and machinability of materials, 11(1/2012), 36–50. doi: 10.1504/IJMMM.2012.044921.CrossRefGoogle Scholar
  52. Singh, M. R., & Mahapatra, S. S. (2012). A swarm optimization approach for flexible flow shop scheduling with multiprocessor tasks. International Journal of Advanced Manufacturing Technology, 62(1–4), 267–277.CrossRefGoogle Scholar
  53. Somashekhar, K. P., Ramachandran, N., & Mathew, J. (2010). Optimization of material removal rate in Micro-EDM using artificial neural network and genetic algorithms. Materials and Manufacturing Processes, 25(6), 467–475.CrossRefGoogle Scholar
  54. Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences, 177(22), 5033–5049.CrossRefGoogle Scholar
  55. Wang, L. F., & Singh, C. (2007). Environmental/economic power dispatch using a fuzzified multiobjective particle swarm optimization algorithm. Electric Power System Research, 77(12), 1654–1664.CrossRefGoogle Scholar
  56. Wang, Y. M. (1998). Using the method of maximizing deviations to make decision for multi-indices. System Engineering Electronic, 20(7), 24–26.Google Scholar
  57. Wu, C., Wang, D., Ip, A., Wang, D., Chan, C., & Wan, H. (2009). A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing, 20(5), 535–549. Google Scholar
  58. Yang, S. H., Srinivas, J., Mohana, S., Lee, D. K., & Balaji, S. (2009). Optimization of electric discharge machining using simulated annealing. Journal of Materials Processing Technology, 209(9), 4471–4475. Google Scholar
  59. Yoshida, H., Kawata, K., Fukuyama, Y., & Nakanishi, Y. A. (2001). Particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15(4), 1232–1239.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chinmaya P. Mohanty
    • 1
  • Siba Sankar Mahapatra
    • 1
    Email author
  • Manas Ranjan Singh
    • 1
  1. 1.Department of Mechanical EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations