Journal of Intelligent Manufacturing

, Volume 26, Issue 4, pp 641–658 | Cite as

ALATO: An efficient intelligent algorithm for time optimization in an economic grid based on adaptive stochastic Petri net

  • Mohammad ShojafarEmail author
  • Zahra Pooranian
  • Mohammad Reza Meybodi
  • Mukesh Singhal


Cost and execution time are important issues in economic grids, which are widely used for parallel computing. This paper proposes ALATO, an intelligent algorithm based on learning automata and adaptive stochastic Petri nets (ASPNs) that optimizes the execution time for tasks in economic grids. ASPNs are based on learning automata that predict their next state based on current information and the previous state and use feedback from the environment to update their state. The environmental reactions are extremely helpful for teaching Petri nets in dynamic environments. We use SPNP software to model ASPNs and evaluate execution time and costs for 200 tasks with different parameters based on World Wide Grid standard resources. ALATO performs better than all other heuristic methods in reducing execution time for these tasks.


Grid computing Petri nets  Learning automata Optimization Modeling 


  1. Aissani, N., Bekrar, A., Trentesaux, D., & Beldjilali, B. (2011). Dynamic scheduling for multi-site companies: A decisional approach based on reinforcement multi-agent learning. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-011-0580-y.
  2. Al-Ali, R., Rana, O., Walker, D., Jha, S., & Sohail, S. (2002). G-QOSM: Grid service discovery using QOS properties. Computing and Informatics Journal, Special Issue on Grid Computing, 21(4), 363–382.Google Scholar
  3. Al-Khasawneh, A., & Bsoul, M. (2010). Job scheduling in economic grid environments. International Journal of Information and Communication Technology, 2(3), doi: 10.1504/IJICT.2010.032410.
  4. Arab, A., Ismail, N., & Lee, L. S. (2011). Maintenance scheduling incorporating dynamics of production system and real-time information from workstations. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-011-0616-3.
  5. Archimede, B., Letouzey, A., Memon, M. A., & Xu, J. (2013). Towards a distributed multi-agent framework for shared resources scheduling. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-013-0748-8.
  6. Assuncao, M., & Buyya, R. (2006). An evaluation of communication demand of auction protocols in grid environments Technical report, University of Melbourne, Melbourne, Australia.Google Scholar
  7. Baranauskas, V., Bartkevičius, S., & Šarkauskas, K. (2006). Coloured Petri nets—tool for control systems learning. Electronics and Electrical Engineering., 4, 41–46.Google Scholar
  8. Bilyk, A., & Mönch, L. (2010). A variable neighborhood search approach for planning and scheduling of jobs on unrelated parallel machines. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-010-0464-6.
  9. Boppana, R., & Halldorsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Magazine, Published By BIT Computer Science and Numerical Mathematics, 32(2), 180–196. doi: 10.1007/BF01994876.Google Scholar
  10. Bui, T. N., & Eppley, P. H. (1995). A hybrid genetic algorithm for the maximum clique problem. In Proceedings of 6th international conference on genetic algorithms, San Francisco, CA, USA, pp. 478–484.Google Scholar
  11. Buyya, R. (2002). Economic-based distributed resource management and scheduling for grid computing, Ph.D. Thesis, School of Computer Science and Software Engineering, Monash University, Melbourne, Australia.Google Scholar
  12. Buyya, R. (2002). The World-Wide Grid (WWG).
  13. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., & Tuecke, S. (2002). SNAP: A protocol for negotiating servi\(^{2}\)ce level agreements and coordinating resource management in distributed systems. In 8th workshop on job scheduling strategies for parallel processing, pp. 153–183.Google Scholar
  14. Fleszar, K., Charalambous, C., & Hindi, K. S. (2011). A variable neighborhood descent heuristic for the problem of makespan minimisation on unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-011-0522-8.
  15. Guinet, A. (1995). Scheduling independent jobs on uniform parallel machines to minimize tardiness criteria. Journal of Intelligent Manufacturing, 6, 95–103.CrossRefGoogle Scholar
  16. Hirel, C., Wells, S., Fricksy, R., & Trivedi, K. S. (2000). ISPN: An integrated environment for modeling using stochastic petri nets. In Center for advanced computing and communication department of electrical and computer engineering Duke University. Durham, NC 27708–0291.Google Scholar
  17. Jain, L. C., & Martin, N. M. (1998). Fusion of neural networks, fuzzy sets, and genetic algorithms: Industrial applications, 1st ed.. FL, USA: CRC Press ISBN: 0849398045.Google Scholar
  18. Jeng, M. D., Lin, C. S., & Huang, Y. S. (1999). Petri net dynamics-based scheduling of flexible manufacturing systems with assembly. Journal of Intelligent Manufacturing, 10, 541–555. doi: 10.1023/A:1008960721370.Google Scholar
  19. Khosla, R., & Dillon, T. (2002). Intelligent hybrid multi-agent architecture for engineering complex systems. International Conference on Neural Networks, 4, 2449–2454. doi: 10.1109/ICNN.1997.614540 Houston, TX.
  20. Mahdavifar, Y., & Meybodi, M. R. (2007). Cost-time optimization in economic computational grids. In Proceedings of the third information and knowledge technology, Mashad, Iran: Ferdowsi University of Mashad.Google Scholar
  21. Mahdavifar, Y., & Meybodi, M. R. (2007). Time optimization in economic computational grids using learning automata. In Proceedings of the first Iranian data mining conference. Tehran, Iran: Amirkabir University of Technology.Google Scholar
  22. Mirzaee, A., & Rahimzadeh, P. (2011). A agent-based decentralized algorithm for resource semantic discovery in economic grid. In IEEE 3rd international conference on communication software and networks (ICCSN), pp. 306–311. doi: 10.1109/ICCSN.2011.6013721.
  23. Moore, J., & Hahn, L. (2003). Petri net modeling of high-order genetic systems using grammatical evolution. Bio Systems, 72(2), 177–186. doi: 10.1016/S0303-2647(03)00142-4.CrossRefGoogle Scholar
  24. Murata, T. (2002). Some recent applications of high-level Petri nets. IEEE International Symposium on Circuit and System, 2, 818–821. doi: 10.1109/ISCAS.1991.176488.Google Scholar
  25. Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata: An introduction. Englewood Cliffs, NJ, USA: Prentice-Hall, ISBN 0134855582.Google Scholar
  26. Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2011). A multi-objective facility location model with batch arrivals: Two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-011-0592-7.
  27. Peterson, J. (1981). Petri net theory and the modeling of systems. Englewood Cliffs, NJ, USA: Prentice-Hall, ISBN 0136619835.Google Scholar
  28. Pla, A., Gay, P., Meléndez, J., & López, B. (2012). Petri net-based process monitoring: A workflow management system for process modelling and monitoring. Journal of Intelligent Manufacturing, doi: 10.1023/A:1012292102123.
  29. Pooranian, Z., Shojafar, M., Abawajy, J. H., & Abraham, A. (2013). An efficient meta-heuristic algorithm for grid computing. Journal of Combinatorial Optimization (JOCO), doi: 10.1007/s10878-013-9644-6, Springer.
  30. Pooranian, Z., Shojafar, M., & Javadi, B. (2012). Independent task scheduling in grid computing based on queen bee algorithm. IAES International Journal of Artificial Intelligence (IJ-AI), 1(4), 171–181. doi: 10.11591/ij-ai.v1i4.1229.
  31. Pooranian, Z., Shojafar, M., Abawajy, J. H., & Singhal, M. (2013b). GLOA: A new job scheduling algorithm for grid computing. International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2(1), 59–64. doi: 10.9781/ijimai.2013.218.
  32. Pooranian, Z., Shojafar, M., Tavoli, R., Singhal, M., & Abraham, A. (2013b). A joint meta-heuristic algorithm applied in job scheduling on computational grids. Informatica, 37(2), 157–164. Google Scholar
  33. Poznyak, A. S., & Najim, K. (1997). Learning automata and stochastic optimization. NY: USA: Springer, ISBN: 3540761543.Google Scholar
  34. Radakovič, M., Obitko, M., & Mařík, V. (2011). Dynamic explicitly specified behaviors in distributed agent-based industrial solutions. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-011-0593-6.
  35. Reddy, S. R. (2006). Market economy based resource allocation in grids Master’s thesis. Indian Institute of Technology, Kharagpur, India.Google Scholar
  36. Reisig, W. (1985). Petri nets: An introduction, EATCS monographs on theoretical computer science. USA: Springer. ISBN: 3642699707.Google Scholar
  37. Sarhadi, A., & Meybodi, M. R. (2010). New algorithm for resource selection in economic grid with the aim of cost optimization using learning automata. International Conference on Challenges in Environmental Science and Computer Engineering (CESCE), 1, 32–35. doi: 10.1109/CESCE.2010.185.Google Scholar
  38. Schwardy, E. (2001). Optimization of Petri nets structure using genetic programming. Dept. of Cybernetics and Artificial Intelligence. Faculty of Electrical Engineering and Informatics. University of Technology Koice. Slovakia.Google Scholar
  39. Shojafar, M., Barzegar, S., & Maybodi, M. R. (2011). Time optimizing in economical grid using adaptive stochastic Petri net based on learning automata. In Proceedings of International Conference on Grid Computing & Applications (GCA), WORLDCOMP, pp. 67–73.Google Scholar
  40. Shojafar, M., Pooranian, Z., Abawajy, J. H., & Meybodi, M. R. (2013). An efficient scheduling method for grid systems based on a hierarchical stochastic Petri net. Journal of Computing Science and Engineering (JCSE), 7(1), 44–52. doi: 10.5626/JCSE.2013.7.1.44.CrossRefGoogle Scholar
  41. Venkataramana, R. D., & Ranganathan, N. (1999). Multiple cost optimization for task assignment in heterogeneous computing systems using learning automata. Heterogeneous Computing Workshop (HCW’99), IEEE Computer Society, pp. 137–145. doi: 10.1109/HCW.1999.765118.
  42. Zhou, M. C., & Jeng, M. D. (2002). Modeling analysis simulation scheduling and control of semiconductor manufacturing systems: A Petri net approach. IEEE Transaction on Semiconductor Manufacturing, 11(3), 333–357. doi: 10.1109/66.705370, ISSN: 0894–6507.
  43. Zimmermann, A., Rodriguez, D., & Silva, M. (2001). A two phase optimization method for Petri net models of manufacturing systems. Journal of Intelligent Manufacturing, 12, 409–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohammad Shojafar
    • 1
    Email author
  • Zahra Pooranian
    • 2
  • Mohammad Reza Meybodi
    • 3
  • Mukesh Singhal
    • 4
  1. 1.Department of Information Engineering, Electronics, and Telecommunications (DIET)Sapienza University di RomaRomeItaly
  2. 2.Department of Computer Engineering, Dezful BranchIslamic Azad UniversityDezfulIran
  3. 3.Computer and IT departmentAmirkabir Technical UniversityTehranIran
  4. 4.Electrical Engineering and Computer ScienceUniversity of CaliforniaMercedUSA

Personalised recommendations