Journal of Intelligent Manufacturing

, Volume 25, Issue 5, pp 1197–1206 | Cite as

Application of the classical levels of intelligence to structuring the control system in an automated distribution centre

  • Andrés García Higuera
  • Javier de las Morenas


Traditional management and control models can benefit from added levels of intelligence to increase their capability to adapt to the continuous changes in global markets. After reviewing the classical definition of intelligence and its levels, this paper provides a new approach to help increase the responsiveness of management and control to changes and disturbances in the manufacturing supply chain. The ancient concept of the “Tertium Quid” has inspired a three-level community of agents (MAS-TRIO) that is proposed to improve the coordination of all actors involved. The proposed model combines Multi-Agent Systems (MAS) with Radio-Frequency Identification (RFID) to make possible a certain level of Autonomous Intelligence in the decision-taking process. This paper analyses how these levels of intelligence can be applied to management and control, and the performance of the proposed model has been tested at low and mid-levels on an experimental platform representing the facilities of a distribution centre controlled by a network of programmable logic controllers (PLCs).


Distributed control Intelligent products RFID Alignment Logistics Experimental platform 


  1. Brennan, R., Gruver, W., & Hall, K. (2011). Forward-special issue on industrial applications of holonic manufacturing systems. Systems, man, and cybernetics, part C: Applications and reviews, IEEE transactions on, 41(1), 1–3.CrossRefGoogle Scholar
  2. Bussmann, S., Jennings, N., & Wooldridge, M. J. (2004). Multiagent systems for manufacturing control: A design methodology. New York: Springer.CrossRefGoogle Scholar
  3. BYG Simulation. (2012). About Grasp 10. Accessed 9 January 2013.
  4. Encinas, J., & de las Morenas, J. (2012). Improvements in operations management applied to a 3D simulation connected to a physical platform. Journal of Intelligent Manufacturing, 23(3), 845–856. doi:10.1007/s10845-010-0441-0.CrossRefGoogle Scholar
  5. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., & Dance, S. (2004). Implementing industrial multi-agent systems using JACK. In Programming Multi-Agent Systems (Vol. 3067, pp. 18–48), Lecture Notes in Computer Science. Heidelberg: Springer Berlin.Google Scholar
  6. Finkenzeller, K. (2010). RFID handbook: Fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. New York: Wiley.Google Scholar
  7. García, A., & Cenjor, A. (2007). Sistema Heterárquico de Control Basado en Agentes para Sistemas de Fabricación. Revista iberoamericana de automática e informática industrial (RIAI), 4(1), 83.CrossRefGoogle Scholar
  8. García Ansola, P., de las Morenas, J., García, A., & Otamendi, J. (2012). Distributed decision support system for airport ground handling management using WSN and MAS. Engineering Applications of Artificial Intelligence, 25(3), 544–553. doi:10.1016/j.engappai.2011.11.005.CrossRefGoogle Scholar
  9. Gardner, J. E. S. (2006). Exponential smoothing: The state of the art-part II. International Journal of Forecasting, 22(4), 637–666.CrossRefGoogle Scholar
  10. Garijo, F. J. (2002). Tecnología de agentes: Experiencias y perspectivas para el desarrollo de nuevos servicios y aplicaciones. Boletin tic n\(^{o}\) 24.Google Scholar
  11. Khalgui, M., Mosbahi, O., Hanisch, H.-M., & Li, Z. (2012). A multi-agent architectural solution for coherent distributed reconfigurations of function blocks. Journal of Intelligent Manufacturing, 23(6), 2531–2549. doi:10.1007/s10845-011-0556-y.CrossRefGoogle Scholar
  12. Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979–991.CrossRefGoogle Scholar
  13. Leitão, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry, 57(2), 121–130.CrossRefGoogle Scholar
  14. McFarlane, D. (2012). Product intelligence: Theory and practice. In 14th IFAC symposium on information control problems in manufacturing, Bucharest (Romania), 2012 (Vol. 14). doi:10.3182/20120523-3-RO-2023.00441.
  15. McFarlane, D., Sarma, S., Chirn, J. L., Wong, C. Y., & Ashton, K. (2003). Auto ID systems and intelligent manufacturing control. Engineering Applications of Artificial Intelligence, 16(4), 365–376.CrossRefGoogle Scholar
  16. Mendes, J. M., Leitão, P., Colombo, A. W., & Restivo, F. (2008). Service-oriented control architecture for reconfigurable production systems. In 6th IEEE international conference on industrial informatics, 2008 (pp. 744–749).Google Scholar
  17. Meyer, G. G., Främling, K., & Holmström, J. (2009). Intelligent products: A survey. Computers in Industry, 60(3), 137–148.CrossRefGoogle Scholar
  18. Pannequin, R., & Thomas, A. (2012). Another interpretation of stigmergy for product-driven systems architecture. Journal of Intelligent Manufacturing, 23(6), 2587–2599. doi:10.1007/s10845-011-0588-3.CrossRefGoogle Scholar
  19. Pechouček, M., & Mařík, V. (2008). Industrial deployment of multi-agent technologies: Review and selected case studies. Autonomous Agents and Multi-Agent Systems, 17(3), 397–431. doi:10.1007/s10458-008-9050-0.CrossRefGoogle Scholar
  20. Qu, T., Yang, H. D., Huang, G., Zhang, Y. F., Luo, H., & Qin, W. (2012). A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers. Journal of Intelligent Manufacturing, 23(6), 2343–2356. doi:10.1007/s10845-010-0476-2.CrossRefGoogle Scholar
  21. Radakovič, M., Obitko, M., & Mařík, V. (2012). Dynamic explicitly specified behaviors in distributed agent-based industrial solutions. Journal of Intelligent Manufacturing, 23(6), 2601–2621. doi:10.1007/s10845-011-0593-6.CrossRefGoogle Scholar
  22. Rao, A. S., Georgeff, M. P. (1995). BDI agents: From theory to practice. In Proceedings of the first international conference on multi-agent systems (ICMAS-95), 1995 (pp. 312–319).Google Scholar
  23. Ren, Z., Yang, F., Bouchlaghem, N. M., & Anumba, C. J. (2011). Multi-disciplinary collaborative building design-A comparative study between multi-agent systems and multi-disciplinary optimisation approaches. Automation in Construction, 20(5), 537–549. doi:10.1016/j.autcon.2010.11.020.
  24. Soto, J., Vizcaino, A., Portillo, J., Piattini, M., & Kusche, O. (2009). A two-layer multi-agent architecture to facilitate knowledge sharing within communities of practice. Inteligencia artificial, 13(42).Google Scholar
  25. Theiss, S., Vasyutynskyy, V., & Kabitzsch, K. (2009). Software agents in industry: A customized framework in theory and praxis. IEEE Transactions on Industrial Informatics, 5(2), 147–156.CrossRefGoogle Scholar
  26. Thomas, A., Trentesaux, D., & Valckenaers, P. (2012). Intelligent distributed production control. Journal of Intelligent Manufacturing, 23(6), 2507–2512. doi:10.1007/s10845-011-0601-x.CrossRefGoogle Scholar
  27. Thorne, A., McFarlane, D., Hodges, S., Smith, S., Harrison, M., & Brusey, J. et al. (2003). The autoID automation laboratory: Building tomorrow’s systems today. Auto-ID centre white papers. University of Cambridge.Google Scholar
  28. Valckenaers, P., Germain, B. S., Verstraete, P., Van Belle, J., Hadeli, & Van Brussel, H. (2009). Intelligent products: Agere versus essere. Computers in Industry, 60(3), 217–228.CrossRefGoogle Scholar
  29. Valckenaers, P., Hadeli, S., Germain, B. S., Verstraete, P., & Van Brussel, H. (2007). MAS coordination and control based on stigmergy. Computers in Industry, 58(7), 621–629.CrossRefGoogle Scholar
  30. Vrba, P., Tichý, P., Mařík, V., Hall, K. H., Staron, R. J., Maturana, F. P., et al. (2011). Rockwell automation’s holonic and multiagent control systems compendium. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(1), 14–30.CrossRefGoogle Scholar
  31. Wooldridge, M., & Jennings, N. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2), 115–152.CrossRefGoogle Scholar
  32. Wooldridge, M. J. (2002). An introduction to multiagent systems. New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrés García Higuera
    • 1
  • Javier de las Morenas
    • 1
  1. 1.School of Industrial EngineeringUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations