Advertisement

Journal of Intelligent Manufacturing

, Volume 25, Issue 6, pp 1207–1219 | Cite as

Analogies between Internet network and logistics service networks: challenges involved in the interconnection

  • Rochdi SarrajEmail author
  • Eric Ballot
  • Shenle Pan
  • Benoit Montreuil
Article

Abstract

Logistics networks that are currently formed by supply chains are intertwined but remain heterogeneous and not very interconnected. In computer networks, this stage was overtaken with the arrival of Internet. In this paper we explore the possible analogies and transpositions between computer networks, in particular Internet, and logistic networks. To this end, a new logistical concept was proposed: Physical Internet that aims at the interconnection of networks of logistic services. In fact, there are strong similarities between these networks in spite of the basic differences in the type of objects that prevent an integral transposition. To illustrate the pertinence of this analogy, the authors illustrate the interconnection potential of logistics networks with a stylised model. In view of the exploratory nature of this work, this impact will be assessed by means of an analytic model based on a method of continuous approximations. This illustration provides an indication of the potential inherent in the interconnection of logistics networks.

Keywords

Supply chain Network Physical Internet Analogy Interconnection Continuous approximations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, D., & Caroleo, B. (2011). An integrated methodology for the analysis of collaboration in industry networks. Journal of Intelligent Manufacturing, 1–8. doi: 10.1007/s10845-011-0510-z.
  2. Ballot E., Fontane F. (2008) Rendement et efficience du transport: un nouvel indicateur de performance. Revue Française de Gestion Industrielle 27(2): 41Google Scholar
  3. Ballot E., Fontane F. (2010) Reducing greenhouse gas emissions through the collaboration of supply chains: Lessons from French reatail chains. Production, Plannig & Control 21: 640–650CrossRefGoogle Scholar
  4. Ballot, E., Glardon, R., et al. (2010). Rapport Open Fret: Contribution à à la conceptualisation et à à la réalisation d’un Hub Rail_Route de l’Internet Physique. M. C. 52. PREDIT: Programme de recherhe et d’innovation dans les trasports terrestres.Google Scholar
  5. Boissieu, C. (2006). Division par quatre des émissions de gaz à à effet de serre de la France à à l’horizon 2050, Ministère de l’Ecologie et du développement durable.Google Scholar
  6. Bontekoning Y., Priemus H. (2004) Breakthrough innovations in intermodal freight transport. Transportation Planning and Technology 27(5): 335–345CrossRefGoogle Scholar
  7. Camarinha-Matos L. M., Afsarmanesh H. (2005) Collaborative networks: A new scientific discipline. Journal of Intelligent Manufacturing 16(4): 439–452. doi: 10.1007/s10845-005-1656-3 CrossRefGoogle Scholar
  8. Camarinha-Matos L. M., Afsarmanesh H. (2007) A comprehensive modeling framework for collaborative networked organizations. Journal of Intelligent Manufacturing 18(5): 529–542. doi: 10.1007/s10845-007-0063-3 CrossRefGoogle Scholar
  9. Cheikhrouhou N., Piot G. et al (2010) A multi-criteria model for the evaluation of business benefits in horizontal collaborative networks. Journal of Intelligent Manufacturing 21(3): 301–309. doi: 10.1007/s10845-008-0181-6 CrossRefGoogle Scholar
  10. Chopra S., Meindl P. (2004) Supply chain mangement: Strategy, planning and operation. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  11. Citepa (2009). Substances relatives à à l’accroissement de l’effet de serre. Emissions dans l’air en France. France: Centre Interprofessionnel Techniques d’Etudes de la Pollution Atmosphérique.Google Scholar
  12. Comer D. E., Stevens D. L. (1982) Internetworking with TCP/IP. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  13. Cruijssen F., Cools M. et al (2007) Horizontal cooperation in logistics: Opportunities and impediments. Transportation Research Part E: Logistics and Transportation Review 43(2): 129–142CrossRefGoogle Scholar
  14. Daganzo C. F. (1984) The distance traveled to visit N points with a maximum of C stops per vehicle: An analytic model and an application. Transportation Science 18(4): 331–350CrossRefGoogle Scholar
  15. Daganzo C. F. (2005) Logistics systems analysis. Springer, BerlinGoogle Scholar
  16. European Commission (2008). Methodologies used in surveys of road freight transport in member states and candidate countries. Luxembourg: Eurostat.Google Scholar
  17. Groothedde B., Ruijgrok C. et al (2005) Towards collaborative, intermodal hub networks: A case study in the fast moving consumer goods market. Transportation Research Part E: Logistics and Transportation Review 41(6): 567–583CrossRefGoogle Scholar
  18. Hardy D., Malléus G. et al (2002) Networks: Internet, telephony, multimedia: convergences and complementarities. Springer, BerlinGoogle Scholar
  19. Huitema C. (1999) Routing in the Internet. (2nd ed.). Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  20. Le, T., & Lee, T. R. (2011). Model selection with considering the CO2 emission alone the global supply chain. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-011-0613-6
  21. McKinnon A., Ge Y. et al (2003) Analysis of transport efficiency in the UK food supply chain. Logistics Research Centre Heriot-Watt University, EdinburghGoogle Scholar
  22. McKinnon A. C., Piecyk M. I. (2009) Measurement of CO2 emissions from road freight transport: A review of UK experience. Energy Policy 37(10): 3733–3742CrossRefGoogle Scholar
  23. Montreuil, B. (2010). Physical Internet Manifesto V1.7: Globally transforming the way physical objects are handled, moved, stored, realized, supplied and used [Online]. Québec, CA.Google Scholar
  24. Montreuil, B., Meller, R., et al. (2010). Towards a Physical Internet: The impact on logistics facilities and material handling systems design and innovation. In K. Gue et al. (Eds.), Progress in material handling research. Material Handling Industry of America.Google Scholar
  25. Pan, S., Ballot, E., et al. (2010). The reduction of greenhouse gas emissions from freight transport by pooling supply chains. International Journal of Production Economics. in Press, corrected Proof.Google Scholar
  26. Peterson L. L., Davie B. S. (2003) Computer networks: A systems approach. Morgan Kaufmann, Los Altos, CAGoogle Scholar
  27. Piecyk M. I., McKinnon A. C. (2010) Forecasting the carbon footprint of road freight transport in 2020. International Journal of Production Economics 128(1): 31–42CrossRefGoogle Scholar
  28. Stefanovic D., Stefanovic N. (2008) Methodology for modeling and analysis of supply networks. Journal of Intelligent Manufacturing 19(4): 485–503. doi: 10.1007/s10845-008-0098-0 CrossRefGoogle Scholar
  29. Stevens W. R. (1994) TCP/IP illustrated: The protocols. Addison-Wesley Professional, Reading, MAGoogle Scholar
  30. Stewart J. W. III (1998) BGP4: Inter-domain routing in the Internet. Addison-Wesley Longman Publishing Co., Inc, Reading, MAGoogle Scholar
  31. Tanenbaum A. S. (2003) Computer networks. (4th ed.). Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rochdi Sarraj
    • 1
    Email author
  • Eric Ballot
    • 1
  • Shenle Pan
    • 1
  • Benoit Montreuil
    • 2
  1. 1.CGS-Centre de Gestion ScientifiqueMines Paris TechParis Cedex 06France
  2. 2.Faculty of Administration Sciences, CIRRELT-Interuniversity Research Center on Enterprise Networks, Logistics and TransportationUniversité LavalQuebecCanada

Personalised recommendations