Advertisement

Journal of Intelligent Manufacturing

, Volume 24, Issue 4, pp 729–740 | Cite as

An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems

Article

Abstract

Artificial bee colony (ABC) algorithm developed by Karaboga is a nature inspired metaheuristic based on honey bee foraging behavior. It was successfully applied to continuous unconstrained optimization problems and later it was extended to constrained design problems as well. This paper introduces an upgraded artificial bee colony (UABC) algorithm for constrained optimization problems. Our UABC algorithm enhances fine-tuning characteristics of the modification rate parameter and employs modified scout bee phase of the ABC algorithm. This upgraded algorithm has been implemented and tested on standard engineering benchmark problems and the performance was compared to the performance of the latest Akay and Karaboga’s ABC algorithm. Our numerical results show that the proposed UABC algorithm produces better or equal best and average solutions in less evaluations in all cases.

Keywords

Artificial bee colony (ABC) Constrained optimization Swarm intelligence Nature inspired metaheuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, B., & Karaboga, D. (2010). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-010-0393-4 (Published online).
  2. Aydin, M. E. (2010), Coordinating metaheuristic agents with swarm intelligence. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-010-0435-y (Published online).
  3. Baykasoglu A., Ozbakir L., Tapkan P. (2007) Artificial bee colony algorithm and its application to generalized assignment problem. In: Chan F. T. S, Tiwari M. K. (eds) Swarm intelligence, focus on ant and particle swarm optimization. I-Tech Education and Publishing, Vienna, pp 113–144Google Scholar
  4. Chang, F. C., & Huang, H. C. (2010). A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences doi: 10.1016/j.ins.2010.02.025 (Article in press).
  5. Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2011). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-011-0584-7 (Published online).
  6. Deb K. (2000) An efficient constraint-handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2–4): 311–338CrossRefGoogle Scholar
  7. Dorigo M., Gambardella L. M. (1997) Ant colonies for the travelling salesman problem. Biosystems 43(2): 73–81CrossRefGoogle Scholar
  8. Gaitonde, V. N., & Karnik, S. R. (2010). Minimizing burr size in drilling using artificial neural network (ann)-particle swarm optimization (pso) approach. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-010-0481-5 (Published online).
  9. Haddad O. B., Afshar A., Marino M. A. (2006) Honey-bees mating optimization (hbmo) algorithm: A new heuristic approach for water resources optimization. Water Resources Management 20(5): 661–680CrossRefGoogle Scholar
  10. Hamida, S. B., & Schoenauer, M. (2002). Aschea: New results using adaptive segregational constraint handling. In Proceedings of the congress on evolutionary computation 2002 (CEC’2002) (pp. 884–889). IEEE Service Center.Google Scholar
  11. He S., Prempain E., Wu Q. (2004) An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization 36(5): 585–605CrossRefGoogle Scholar
  12. Jovanovic R., Tuba M. (2011) An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem. Applied Soft Computing 11(8): 5360–5366CrossRefGoogle Scholar
  13. Jun-Qing Li Q. K. P, Xie S. X. (2010) A hybrid variable neighborhood search algorithm for solving multi-objective flexible job shop problems. Computer Science and Information Systems 7(4): 907–930CrossRefGoogle Scholar
  14. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.Google Scholar
  15. Karaboga D., Akay B. (2011) A modified artificial bee colony (abc) algorithm for constrained optimization problems. Applied Soft Computing 11(3): 3021–3031CrossRefGoogle Scholar
  16. Karaboga, D., & Basturk, B. (2007a). Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In LNAI 4529: IFSA’07 proceedings of the 12th international fuzzy systems association world congress on foundations of fuzzy logic and soft computing (pp. 789–798). Springer.Google Scholar
  17. Karaboga D., Basturk B. (2007) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3): 459–471CrossRefGoogle Scholar
  18. Karaboga D., Basturk B. (2008) On the performance of artificial bee colony (abc) algorithm. Applied Soft Computing 8(1): 687–697CrossRefGoogle Scholar
  19. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks (pp. 1942–1948). Piscataway, NJ: IEEE Service Center.Google Scholar
  20. Koziel S., Michalewicz Z. (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation 7(1): 19–44CrossRefGoogle Scholar
  21. Lu, M., & Romanowski, R. (2011). Multi-contextual ant colony optimization of intermediate dynamic job shop problems. The International Journal of Advanced Manufacturing Technology 1–15. doi: 10.1007/s00170-011-3634-6 (Published online).
  22. Mezura-Montes, E., & Coello Coello, C. A. (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms. In MICAI 2005: Advances in artificial intelligence of lecture notes in computer science (pp. 652–662). Springer.Google Scholar
  23. Mezura-Montes E., Miranda-Varela C. A. (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1): 1–17CrossRefGoogle Scholar
  24. Mezura-Montes E., Coello Coello E. M., Gomez-Ramon R. (2010) Differential evolution in constrained numerical optimization: An empirical study. Information Sciences 180(22): 4223–4262CrossRefGoogle Scholar
  25. Pan D., Liu Z. (2011) An improved particle swarm optimization algorithm. In: Deng H., Miao D., Wang F. L., Lei J. (eds) Emerging research in artificial intelligence and computational intelligence, communications in computer and information science. Springer, Berlin, pp 550–556CrossRefGoogle Scholar
  26. Parsopoulos, K., & Vrahatis, M. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. In ICNC 2005: Advances in natural computation, volume 3612/2005 of LCNS (pp. 582–591). Springer.Google Scholar
  27. Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2011). A multi-objective facility location model with batch arrivals: Two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-011-0592-7 (Published online).
  28. Pham, D. T., Kog, E., Ghanbarzadeh, A., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In IPROMS 2006 proceeding 2nd international virtual conference on intelligent production machines and systems (pp. 454–459). Elsevier.Google Scholar
  29. Puranik P., Bajaj P., Abraham A., Palsodkar P., Deshmukh A. (2011) Human perception-based color image segmentation using comprehensive learning particle swarm optimization. Journal of Information Hiding and Multimedia Signal Processing 2(3): 227–235CrossRefGoogle Scholar
  30. Ray T., Liew K. (2003) Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation 7(4): 386–396CrossRefGoogle Scholar
  31. Runarsson T. P., Yao X. (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on evolutionary computation 4(3): 284–294CrossRefGoogle Scholar
  32. Runarsson T. P., Yao X. (2005) Search biases in constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics Part C-Applications and Reviews 35(2): 233–243CrossRefGoogle Scholar
  33. Srinivasan, D., & Seow, T. (2003). Particle swarm inspired evolutionary algorithm (ps-ea) for multiobjective optimization problems. In: The 2003 congress on evolutionary computation—CEC 2003 (pp. 2292–2297). IEEE Press.Google Scholar
  34. Wang Y., Zhang B., Chen Y. (2011) Robust airfoil optimization based on improved particle swarm optimization method. Applied Mathematics and Mechanics (English Edition) 32(10): 1245–1254CrossRefGoogle Scholar
  35. Yang, X. S. (2005). Engineering optimizations via nature-inspired virtual bee algorithms. In Artificial intelligence and knowledge engineering applications: A bioinspired approach, LNCS (Vol. 3562, pp. 317–323). Springer.Google Scholar
  36. Zavala, A. E. M., Hernandez, A., & Diharce, E. R. V. (2005). Constrained optimization via particle evolutionary swarm optimization algorithm (peso). In GECCO ’05 Proceedings of the 2005 conference on genetic and evolutionary computation (pp. 209–216). ACM Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Computer ScienceMegatrend University BelgradeBelgradeSerbia

Personalised recommendations