Journal of Intelligent Manufacturing

, Volume 23, Issue 5, pp 1649–1670 | Cite as

Heterarchical production control in manufacturing systems using the potential fields concept

  • N. Zbib
  • C. Pach
  • Y. Sallez
  • D. Trentesaux


This article deals with the potential field concept and its application to dynamic task allocation and dynamic routing controls of flexible manufacturing systems (FMS). This potential field approach requires increasing the interaction capabilities of the different entities, not only resources but also products themselves. In this approach, products request services from resources, sensing the fields emitted by resources and selecting the field that best satisfies the service request. Many already published approaches that are capable of modelling systems based on the interactions between the entities in manufacturing systems are presented. Then, the potential field concept and its application to FMS control are explained in detail. Next, a potential field model and its application are proposed in the real-time heterarchical control of dynamic resource allocation and dynamic product routing. Using a NetLogo simulation, the potential field model supports hard assumptions, such as dynamic transportation times, limited storage capacities and breakdown events. To validate this model, an ongoing real implementation is presented with the AIP-PRIMECA FMS.


Potential field Heterarchical control Dynamic allocation Dynamic routing FMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aissani N., Beldjilali B., Trentesaux D. (2009) Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach. Engineering Applications of Artificial Intelligence 22(7): 1089–1103CrossRefGoogle Scholar
  2. Arkin, R., Bekey, C., & George, A. (1997). Robot Colonies, ISBN: 978-0-7923-9904-9, 160 p., Hardcover.Google Scholar
  3. Babiceanu R., Chen F. (2006) Development and applications of holonic manufacturing systems: A survey. Journal of Intelligent Manufacturing 17: 111–131CrossRefGoogle Scholar
  4. Bahroun, Z., et al. (2008). Modélisation multi-agents pour la simulation de politiques de d’approvisionnement au sein de chaines logistiques, 7e International Conference of MOdelisation and SIMulation - MOSIM’08—From 31 March to 2 April—Paris- France.Google Scholar
  5. Baker A. D. (1998) A survey of factory control algorithms that can be implemented in a multi-agent heterarchy: Dispatching, scheduling, and pull. Journal of Manufacturing Systems 17(4): 297–320CrossRefGoogle Scholar
  6. Barraquand, J., & Latombe J. (1989). Robot motion planning: A distibuted representation approach. Research Report, STAN-CS-89-1257, Department of Computer Science, Stanford University.Google Scholar
  7. Berger, T., Sallez, Y., & Trentesaux, D. (2009). Open control of FMS and its application to potential field, CIRP09, 42nd Conference on Manufacturing Systems, Wed. 3 - Fri. 5, June, Grenoble, France.Google Scholar
  8. Bousbia, S., & Trentesaux, D. (2002). Self-organization in distributed manufacturing control: state-of-the-art and future trends. IEEE International conference on Systems, Man & Cybernetics, (Hammamet, Tunisa) paper #WA1L1.Google Scholar
  9. Breton, L., Maza, S., & Catstagna, P. (2004). Simulation Multi_agent de systèmes d’AGVs : Comparaison avec une approche prédictive. 5° Francophone Conference in MOdelisation and SIMulation, MOSIM’04—From 1 to 3 September - Nantes (France).Google Scholar
  10. Brückner, S. (2000). Return from the Ant synthetic ecosystems for manufacturing control, Thesis Humboldt-University of Berlin, June.Google Scholar
  11. Clarinet System. (2009). Network connectivity for mobile devices,
  12. Dorigo M., Stützle T. (2006) Ant colony optimization. The MIT Press, Cambridge, MACrossRefGoogle Scholar
  13. Ferber, J. (1995). Les systèmes multi- agents—vers une intelligence collective, InterEditions, Paris (ISBN 2- 7296- 0572- X).Google Scholar
  14. Hadeli T., Valckenaers P., Kollingbaum M., Van Brussel H. (2004) Multi-agent coordination and control using stigmergy. Computers in Industry 53: 75–96CrossRefGoogle Scholar
  15. Hu H., Li Z. (2009) Local and global deadlock prevention policies for resource allocation systems using partially generated reachability graphs. Computers & Industrial Engineering 57: 1168–1181CrossRefGoogle Scholar
  16. Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In IEEE international conference on robotics and automation (pp. 500–505).Google Scholar
  17. Koestler A. (1967) The Ghost in the Machine. Hutchinson, Stroundsburg, PAGoogle Scholar
  18. Leitaõ P. (2009) Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence 22: 979–991CrossRefGoogle Scholar
  19. Maione G., Naso D. (2003) A soft computing approach for task contracting in multi-agent manufacturing control. Computers in Industry 52: 199–219CrossRefGoogle Scholar
  20. Mamei M., Menezes R., Tolksdorf R., Zambonelli F. (2006) Case studies for self-organization in computer science. Journal of Systems Architecture 52: 443–460CrossRefGoogle Scholar
  21. Mařík V., Lazansky J. (2007) Industrial applications of agent technologies. Control Engineering Practice 15: 1364–1380CrossRefGoogle Scholar
  22. McLurkin, J. (2004). Stupid robot tricks: A behavior-based distributed algorithm library for programming swarms of robots. Master of science in electrical engineering and computer science at the Massachusetts Institute of Technology.Google Scholar
  23. Montech Technology. (2008). Conveyor systems,
  24. Moujahed, S. (2007). Approche multi-agents auto-organisée pour la résolution des contraintes spatiales dans les problèmes de positionnement mono et multi-niveaux. Thesis in Franche-Comté University and Belfort-Montbéliard Technology University.Google Scholar
  25. Okino, N. (1993). Bionic manufacturing system in flexible manufacturing system: Past—present—future. In J. Peklenik (ed) (pp. 73–95) CIRP, Paris.Google Scholar
  26. Ounnar, F., Pujo, P., Mekaouche, L., & Giambiasi, N. (2007). Integration of a flat holonic form in an HLA environment. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-008-0106-4.
  27. Parunak, H. V. D., Brueckner, S., & Sauter, J. (2001). ERIM’s approach to fine-grained agents. In Proceedings of the NASA/JPL workshop on radical agent concepts (WRAC’2001), Greenbelt, MD, Sept. 19–21.Google Scholar
  28. Peeters, P., Van Brussel, H., Valckenaers, P., Wyns, J., Bongaerts, L., Heikkilä, T., & Kollingbaum, M. (1999). Pheromone based emergent shop floor control system for flexible flow shops. In Proceedings of international workshop IWES’99, Kobe, Japan, Dec. 6–7.Google Scholar
  29. Reynolds C. (1987) Flocks, herds, and schools: A distributed behavioural model. Computer Graphics 21(4): 25–34CrossRefGoogle Scholar
  30. Sallez Y., Berger T., Trentesaux D. (2009a) A stigmergic approach for dynamic routing of active products in FMS. Computer in Industry 60(3): 204–216CrossRefGoogle Scholar
  31. Sallez, Y., Berger, T., & Trentesaux, D. (2009b). Open-control: a new paradigm for integrated product-driven manufacturing control. In Proceedings of 13th IFAC symposium on information control problems in manufacturing (INCOM ‘09), Russia, June 3–5.Google Scholar
  32. Shen W., Wang L., Hao Q. (2006) Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics—Part c: Applications and Reviews 36(4): 563–577CrossRefGoogle Scholar
  33. Smith R. G. (1980) The contract net protocol: High level communication and control in a distributed problem solver. IEEE Transactions on Computer C 29(12): 1104–1113CrossRefGoogle Scholar
  34. Sousa P., Ramos C. (1998) A dynamic scheduling holon for manufacturing orders. Journal of Intelligent Manufacturing 9: 107–112CrossRefGoogle Scholar
  35. Theraulaz G., Bonabeau E. (1999) A brief history of stigmergy. Journal of Artificial Life 5(2): 97–116CrossRefGoogle Scholar
  36. Trentesaux D., Pesin P., Tahon C. (2000) Distributed artificial intelligence for FMS scheduling, control and design support. Journal of Intelligent Manufacturing 11: 573–589CrossRefGoogle Scholar
  37. Trentesaux D. (2007) Les systèmes de pilotage hétérarchiques: innovations réelles ou modèles stériles ?. European Journal of Automated system 41(9–10): 1165–1202CrossRefGoogle Scholar
  38. Trentesaux D. (2009) Distributed control of production systems. Engineering Applications of Artificial Intelligence 22(7): 971–978CrossRefGoogle Scholar
  39. Ueda K. (2001) Synthesis and emergence—research overview. Artificial Intelligence in Engineering 15: 321–327CrossRefGoogle Scholar
  40. Ueda K., Hatono I., Fujii N., Vaario J. (2001) Line-Less production system using self-organization: A case study for BMS. Annuals of CIRP 50/1: 319–322CrossRefGoogle Scholar
  41. Vaario J., Ueda K. (1998) An emergent modelling method for dynamic scheduling. Journal of Intelligent Manufacturing 9(2): 129–140CrossRefGoogle Scholar
  42. Van Brussel H., Wyns J., Valckenaers P., Bongaerts L., Peeters L. (1998) Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37(3): 255–274CrossRefGoogle Scholar
  43. Wago system. (2009), Innovative Connections,
  44. Weyns D., Bouck N., Holvoet T. (2008) A field-based versus a protocol-based approach for adaptive task assignment. Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  45. Wilensky, U. (1999). Center for connected learning and computer-based modeling, orthwestern University. Evanston, IL.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • N. Zbib
    • 1
    • 2
  • C. Pach
    • 1
    • 2
  • Y. Sallez
    • 1
    • 2
  • D. Trentesaux
    • 1
    • 2
  1. 1.Univ. Lille Nord de FranceLilleFrance
  2. 2.UVHC, TEMPO LaboratoryValenciennesFrance

Personalised recommendations