Journal of Intelligent Manufacturing

, Volume 23, Issue 3, pp 639–650

Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel

Article

Abstract

In the present investigation, three different type of support vector machines (SVMs) tools such as least square SVM (LS-SVM), Spider SVM and SVM-KM and an artificial neural network (ANN) model were developed to estimate the surface roughness values of AISI 304 austenitic stainless steel in CNC turning operation. In the development of predictive models, turning parameters of cutting speed, feed rate and depth of cut were considered as model variables. For this purpose, a three-level full factorial design of experiments (DOE) method was used to collect surface roughness values. A feedforward neural network based on backpropagation algorithm was a multilayered architecture made up of 15 hidden neurons placed between input and output layers. The prediction results showed that the all used SVMs results were better than ANN with high correlations between the prediction and experimentally measured values.

Keywords

Surface roughness Support vector machines AISI 304 machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ahmari A. M. A. (2007) Predictive machinability models for a selected hard material in turning operations. Journal of Materials Processing Technology 190: 305–311CrossRefGoogle Scholar
  2. Bağcı E., Işık B. (2006) Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. International Journal of Advanced Manufacturing Technology 31: 10–17CrossRefGoogle Scholar
  3. Basheer A. C., Dabade U. A., Joshi S. S., Bhanuprasad V. V., Gadre V. M. (2008) Modeling of surface roughness in precison machining of metal matrix composites using ANN. Journal of Materials Processing Technology 197: 439–444CrossRefGoogle Scholar
  4. Benardos P. G., Vosniakos G. C. (2003) Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture 43: 833–844CrossRefGoogle Scholar
  5. Burges C. J. C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2: 121–167CrossRefGoogle Scholar
  6. Canu, S., Grandvalet, Y., Guigue, V., & Rakotomamonjy, A. (2005). SVM and Kernel Methods Matlab Toolbox, Perception Systèmes et Information, INSA de Rouen, Rouen, France.Google Scholar
  7. Cao L. J., Tay F. E. H. (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks 14: 1506–1518CrossRefGoogle Scholar
  8. Çaydaş U., Hasçalık A. (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology 202: 574–582CrossRefGoogle Scholar
  9. Chang, P. C., Lin, J. J., & Dzan, W. Y. (2010). Forecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network models. Journal of Intelligent Manufacturing. doi:10.1007/s10845-010-0390-7.
  10. Ciftci I. (2006) Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International 39: 565–569CrossRefGoogle Scholar
  11. Dash P. K., Samantaray S. R., Ganapati P. (2007) Fault classification and section identification of an advanced series-compensated transmission line using support vector machine. IEEE Transactions on Power Delivery 22: 67–73CrossRefGoogle Scholar
  12. Davim J. P., Gaitonde V. N., Karnik S. R. (2008) Investigation into the effect of cutting conditions on surface roughness in turning of free machining steel by ANNmodels. Journal of Materials Processing Technology 205: 16–23CrossRefGoogle Scholar
  13. Demuth H., Beale M., Hagan M. (2006) Neural network toolbox 5, user’s guide. The Mathworks, Inc, MA, pp 9–16Google Scholar
  14. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT Press.Google Scholar
  15. Ekici S., Yıldırım S., Poyraz M. (2009) A pattern recognition application for distance protection. Journal of The Faculty of Engineering and Architecture of Gazi University 241: 51–56Google Scholar
  16. Ezugwu E. O., Fadare D. A., Bonney J., Da Silva R. B., Sales W. F. (2005) Modeling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture 45: 1375–1385CrossRefGoogle Scholar
  17. Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009) Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials (in press).Google Scholar
  18. Grzesik W., Brol S. (2003) Hybrid approach to surface roughness evaluation in multistage machining processes. Journal of Materials Processing Technology 134: 265–272CrossRefGoogle Scholar
  19. Hearst, M. A. (1998). Support vector machines. IEEE Intelligent Systems 18–21.Google Scholar
  20. Karayel, D. (2008). Prediction and control of surface roughness in CNC lathe using artificial neural network. Journal of Materials Processing Technology.Google Scholar
  21. Korkut I., Kasap M., Ciftci I., Seker U. (2004) Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Materials and Design 25: 303–305CrossRefGoogle Scholar
  22. Kwok J. (1999) Moderating the outputs of support vector machine classifier. IEEE Transactions on Neural Networks 10: 1018–1031CrossRefGoogle Scholar
  23. Lee B. Y., Tarng Y.S. (2001) Surface roughness inspection by computer vision in turning operations. International Journal of Machine Tools and Manufacture 41: 1251–1263CrossRefGoogle Scholar
  24. Muthukrishnan N., Davim J. P. (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. Journal of Materials Processing Technology 209: 225–232CrossRefGoogle Scholar
  25. Nalbant M., Gökkaya H., Toktaş I., Sur G. (2009) The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural network. Robotics and Computer Integrated Manufacturing 25: 211–223CrossRefGoogle Scholar
  26. O’Sullivan D., Cotterell M. (2002) Machinability of austenitic stainless steel SS 303. Journal of Materials Processing Technology 124: 153–159CrossRefGoogle Scholar
  27. Karpat T., Karpat Y. (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural network. International Journal of Machine Tools and Manufacture 45: 467–479CrossRefGoogle Scholar
  28. Karpat T., Karpat Y., Figueira L., Davim J. P. (2007) Modeling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. Journal of Materials Processing Technology 189: 192–198CrossRefGoogle Scholar
  29. Paiva A. P., Ferreira J. R., Balestrassi P. P. (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. Journal of Materials Processing Technology 189: 26–35CrossRefGoogle Scholar
  30. Roy S. S. (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precison diamond turning of metal matrix composite. Journal of Materials Processing Technology 173: 337–344CrossRefGoogle Scholar
  31. Salat R., Osowski S. (2004) Accurate fault location in the power transmission line using support vector machine approach. IEEE Transactions on Power Systems 19: 879–886CrossRefGoogle Scholar
  32. Sharma V. S., Dhiman S., Schgal R., Sharma S. K. (2008) Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing 19: 473–483CrossRefGoogle Scholar
  33. Shi D., Gindy N. N. (2007) Tool wear predictive model based on least squares support vector machines. Mechanical Systems and Signal Processing 21: 1799–1814CrossRefGoogle Scholar
  34. Smola, A. J., & Schölkopf, B. (1998). A tutorial on support vector regression. Technical Report NC2-TR-1998-030, ESPRIT Working Group in Neural and Computational Learning.Google Scholar
  35. Suresh P. V. S., Rao P. V., Deshmukh S. G. (2002) A genetic algorithmic approach for optimization of surface roughness prediction model. International Journal of Machine Tools and Manufacture 42: 675–680CrossRefGoogle Scholar
  36. Surjya K. P., Chakraborty D. (2005) Surface roughness prediction in turning using artificial neural network. Neural Computing and Applications 14: 319–324CrossRefGoogle Scholar
  37. Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least squares support vector machines. World Scientific, Singapore, (ISBN 981-238-151-1).Google Scholar
  38. Tekiner Z., Yeşilyurt S. (2004) Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Materials and Design 25: 507–513CrossRefGoogle Scholar
  39. Thukaram D., Khincha H. P., Vijaynarasimha H. P. (2005) Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery 20: 710–721CrossRefGoogle Scholar
  40. Tosun N., Ozler L. (2002) A study of tool life in hot machining using artificial neural networks and regression analysis method. Journal of Materials Processing Technology 124: 99–104CrossRefGoogle Scholar
  41. Umbrello D., Ambrogio G., Filice L., Shivpuri R. (2008) A hybrid finite element method—Artificial neural network approach for predicting residual stress and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Materials and Design 29: 873–883CrossRefGoogle Scholar
  42. Vapnik V. (1998) The support vector method of function estimation. In: Suykens J., Vandewalle J. (eds) Nonlinear modeling: Advanced black-ox techniques. Kluwer, Dordrecht, pp 55–86CrossRefGoogle Scholar
  43. Vojtech, F., & Hlavac, V. (2004). Statistical pattern recognition toolbox for MATLAB (SPRTOOL). User’s Guide; http://cmp.felk.cvut.cz/cmp/cmpsoftware.html.
  44. Weston, J., Elisseeff, A., Bakır, G., & Sinz, F. (2006). The spider software package. http://www.kyb.tuebingen.mpg.de/bs/people/spider.
  45. Wong S. V., Hamouda A. M. S. (2003) Machinability data representation with artificial neural network. Journal of Materials Processing Technology 138: 538–544CrossRefGoogle Scholar
  46. Xavior M. A., Adithan M. (2009) Determining the influance of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. Journal of Materials Processing Technology 209: 900–909CrossRefGoogle Scholar
  47. Zhang J.H.R. (2004) A new algorithm of improving fault location based on SVM. Eighth IEE International Conference on Developments in Power System Protection 1: 204–207CrossRefGoogle Scholar
  48. Zhang J. Z., Chen J. C., Kirby E. D. (2007) The development of an in-process surface roughness adaptive control system in turning operations. Journal of Intelligent Manufacturing 18: 301–311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Technical Education Faculty, Department of ManufacturingUniversity of FiratElazigTurkey
  2. 2.Technical Education Faculty, Department of ElectricUniversity of FiratElazigTurkey

Personalised recommendations