Journal of Intelligent Manufacturing

, Volume 23, Issue 3, pp 341–356 | Cite as

Analysis of new niching genetic algorithms for finding multiple solutions in the job shop scheduling

Review Article

Abstract

In this paper the performance of the most recent multi-modal genetic algorithms (MMGAs) on the Job Shop Scheduling Problem (JSSP) is compared in term of efficacy, multi-solution based efficacy (the algorithm’s capability to find multiple optima), and diversity in the final set of solutions. The capability of Genetic Algorithms (GAs) to work on a set of solutions allows us to reach different optima in only one run. Nevertheless, simple GAs are not able to maintain different solutions in the last iteration, therefore reaching only one local or global optimum. Research based on the preservation of the diversity through MMGAs has provided very promising results. These techniques, known as niching methods or MMGAs, allow not only to obtain different multiple global optima, but also to preserve useful diversity against convergence to only one solution (the usual behaviour of classical GAs). In previous works, a significant difference in the performance among methods was found, as well as the importance of a suitable parametrization. In this work classic methods are compared to the most recent MMGAs, grouped in three classes (sharing, clearing and species competition), for JSSP. Our experimental study found that those new MMGAs which have a certain type of replacement process perform much better (in terms of highest efficacy and multi-solution based efficacy) than classical MMGAs which do not have this type of process.

Keywords

Genetic algorithms Multimodal problems Job shop scheduling problem Niching methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science. doi:10.1287/mnsc.34.3.391.
  2. Amirthagadeswaran, K. S., & Arunachalam, V. P. (2007). Enhancement of performance of genetic algorithm for job shop scheduling problems through inversion operator. International journal of advanced manufacturing technology. doi:10.1007/s00170-005-0392-3.
  3. Aydin M. E., Fogarty T. C. (2002) Simulated annealing with evolutionary process for job-shop scheduling problems. In: Giannakoglou K., Tsahalis D., Periaux J., Papailiou K., Fogarty T. C. (eds) Evolutionary methods for design, optimisation and control. CIMNE, BarcelonaGoogle Scholar
  4. Aydin, M. E., & Fogarty, T. C. (2004a). A simulated annealing algorithm for multi-agent systems: A job-shop scheduling application. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000042665.10086.cf.
  5. Aydin, M. E., & Fogarty, T. C. (2004b). Teams of autonomous agents for job-shop scheduling problems: An experimental study. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034108.66105.59.
  6. Beasley, D., Bull, D., & Marti, R. (1993). A sequential niche technique for multimodal function optimization. Evolutionary Computation. doi:10.1162/evco.1993.1.2.101.
  7. Brucker P. (1997) Scheduling algorithms (2nd ed.). Springer, Berlin, GermanyGoogle Scholar
  8. Bruns, R. (1993). Direct chromosome representation and advanced genetic operators for production scheduling. In S. Forrest (Ed.), Proc. of the 5th International Conference on Genetic Algorithms (pp. 352–359). San Mateo: Kaufmann.Google Scholar
  9. Canbolat, Y., & Gundogar, E. (2004). Fuzzy priority rule for job shop scheduling. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034116.50789.df.
  10. Carlier J., Pinson E. (1989) An algorithm for solving the job shop problem. Management Science 35: 164–176CrossRefGoogle Scholar
  11. Cavichio, D. (1970). Adaptive search using simulated evolution. PhD Thesis. University of Michigan.Google Scholar
  12. Cedeño, W., & Vemuri, V. R. (1999). Analysis of speciation and niching in the multi-niche crowding GA. Theoretical Computers Science, (229) (pp. 177–197). Elsevier.Google Scholar
  13. Davis, L. (1989). Adapting operators probabilities in genetic algorithms. In J. D. Schaffer (Ed.), Proc. of the 3rd International Conference on Genetic Algorithms (pp. 375–378). San Mateo: Kaufmann.Google Scholar
  14. Dunwey, G., Fengping, P., & Shifan, X. (2002). Adaptive niche hierarchy genetic algorithm. In Proc. of IEEE TENCON (pp. 39–42).Google Scholar
  15. Eiben A. E., Smith J. E. (2007) Introduction to evolutionary computing (Natural Computing Series). Springer, Berlin, GermanyGoogle Scholar
  16. El-Bouri, A., Azizi, A., & Zolfaghari, S. (2007). A comparative study of a New Heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling. European Journal of Operational Research. doi:10.1016/j.ejor.2005.12.013.
  17. Fang, H. (1994). Genetic algorithms in timetabling and scheduling. Doctoral dissertation. Department of Artificial Intelligence. University of Edinburgh.Google Scholar
  18. Fang, H., Ross, P., & Corne, D. (1993). A promising genetic algorithm approach to job shop scheduling, rescheduling and open shop scheduling problem. In S. Forrest (Ed.), Proc. of the 5th International Conference on Genetic Algorithms (pp. 375–382). San Mateo: Kaufmann.Google Scholar
  19. Fogel, D. B. (eds) (1998) Evolutionary computation. The fossil record (Selected readings on the history of evolutionary computation). IEEE press, New YorkGoogle Scholar
  20. French S. (1982) Sequencing and scheduling: An introduction to the mathematics of the job shop. Ellis Horwood, Chichester, USAGoogle Scholar
  21. Garey M., Johnson D. (1979) Computers and intractability: A guide to the theory of NP-Completeness. Freeman, New YorkGoogle Scholar
  22. Gento, A. M., & Pérez, M. E. (2002). Study on the genetic operators for the job shop problem. In Proc. of the First Spanish Conference on Evolutionary and Bioinspired Algorithms (pp. 523–530). Mérida, Spain, (in Spanish).Google Scholar
  23. Geyik, F., & Cedimoglu, I. (2004). The strategies and parameters of tabu search for job-shop scheduling. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034106.86434.46.
  24. Giffer, B., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations Research. doi:10.1287/opre.8.4.487.
  25. Glover F., Laguna M. (1997) Tabu search. Kluwer, BostonCrossRefGoogle Scholar
  26. Goldberg D. E. (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, MAGoogle Scholar
  27. Goldberg D. E. (2002) The design of innovation: Lessons from and for competent genetic algorithms. Kluwer, Boston, MAGoogle Scholar
  28. Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Proc. of the 2nd International Conference on Genetic Algorithms (pp. 41–49).Google Scholar
  29. Greenberg, H. (1968). A branch-bound solutions to the general scheduling problem. Operations Research. doi:10.1287/opre.16.2.353.
  30. Harik, G. (1995). Finding multiple solutions using restricted tournament selection. In L. Eschelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 24–31). Kaufmann, USA.Google Scholar
  31. Hart E., Ross P., Corne D. (2005) Evolutionary scheduling: A review. Genetic Programming and Evolvable Machines 6: 191–220CrossRefGoogle Scholar
  32. Hasan, S. M. K., Sarker, R., & Cornforth, D. J. (2007). Hybrid genetic algorithm for solving job-shop scheduling problem. In R. Lee, M. U. Chowdhury, S. Ray, & T. Lee (Eds.), Proceedings of the 6th IEEE International Conference on Computer and Information Science (pp. 519–524). July 2007, Melbourne.Google Scholar
  33. Hoss H., Stützle T. (2004) Stochastic local search-foundations and applications. Morgan Kaufmann, San FranciscoGoogle Scholar
  34. Hu, J. J., & Goodman, E. D. (2004). Robust and efficient genetic algorithms with hierarchical niching and a sustainable evolutionary computation model. In K. Deb, et al. (Eds.), GECCO (pp. 1220–1232).Google Scholar
  35. Jain A. S., Meeran S. (1999) Theory and methodology deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research 113: 390–434CrossRefGoogle Scholar
  36. Kim, J., Cho, D., Jung, H., & Lee, C. (2002). Niching genetic algorithm adopting restricted competition selection combined with pattern search method. IEEE Transactions on magnetic. doi:10.1109/20.996257.
  37. Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science. doi:10.1126/science.220.4598.671.
  38. Kobayashi, S., Ono, I., & Yamamura, M. (1995). An efficient genetic algorithm for the job shop scheduling problem. In L. Eschelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 506–511). San Francisco: Kaufmann.Google Scholar
  39. Lee, Ch., Cho, D., & Jung, H. (1999). Niching genetic algorithm with restricted competition selection for multimodal function optimization. IEEE transactions on magnetics. doi:10.1109/20.767361.
  40. Li, J., Balazs, M., Parks, G. T., & Clarkson, P. J. (2002). A species conserving genetic algorithm for multimodal function optimization. Evolutionary computation. doi:10.1162/106365602760234081.
  41. Lin, S., Goodman, E.D., & Punch, W. P. (1997). A genetic approach to dynamic job shop scheduling problems. In T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms (pp. 481–488). San Francisco: Kaufmann.Google Scholar
  42. Lin, C., & Wu, W. (2002). Niche identification techniques in multimodal genetic search with sharing scheme. Advances in Engineering Software (33), 779–791.Google Scholar
  43. Mahfoud S.W. (1992) Crowding and preservation revisited. In: Männer R., Manderick B. (eds) Parallel problem solving form nature II. Elsevier, New York, pp 27–36Google Scholar
  44. Mattfeld D. C. (1995) Evolutionary search and the job shop. Investigations on genetic algorithms for production scheduling. Springer, BerlinGoogle Scholar
  45. Michalewicz Z. (1995) Genetic algorithms + Data structures + Evolutions programs. Springer, Berlin, GermanyGoogle Scholar
  46. Nakano, R., & Yamada, T. (1991). Convencional genetic algorithms for job shop problems. In R. Belew, & L. B. Booker (Eds.), Proc. of the 4 th International Conference on Genetic Algorithms (pp. 474–479). California: Kaufmann.Google Scholar
  47. Nowicki E., Smutnicki C. (1996) A fast tabu search algorithm for the job shop problem. Management Science 42: 797–813CrossRefGoogle Scholar
  48. Nowicki E., Smutnicki C. (2005) An advanced tabu algorithm for the job shop problem. Journal of Scheduling 8: 145– 159CrossRefGoogle Scholar
  49. Oei, C. K., Godberg, D. E., & Chang, S. J. (1991). Tournament selection, niching and the preservation of diversity. IlliGAL Report No. 91011. University of Illinois, USA.Google Scholar
  50. Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations Research. doi:10.1287/opre.25.1.45.
  51. Pétrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. In Proc. IEEE International Conference on Evolutionary Computation (pp. 798–803). Japan.Google Scholar
  52. Pétrowski, A. (1997). A new selection operator dedicated to speciatin. In T. Bäck (Ed.), Proc. of the 7th International Conference on Genetic Algorithms (pp. 144–151). San Mateo: Kaumann.Google Scholar
  53. Pérez, E., Herrera, F., Hernández, C. (2003). Finding multiple solutions in job shop scheduling by niching genetic algorithms. Journal of Intelligent Manufacturing. doi:10.1023/A:1024649709582.
  54. Ramalhinho H., Marti O., Stützle T. (2003) Iterated local search. In: Glover F., Kochenberger G. A. (eds) Handbook of metaheuristics. Kluwer, MA, pp 321–354Google Scholar
  55. Sareni B., Krahenbuhl L. (1998) Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation 2: 97–106CrossRefGoogle Scholar
  56. Sivanandam S. N., Deepa S. N. (2007) Introduction to genetic algorithms. Springer, Berlin, GermanyGoogle Scholar
  57. Usher, J. (2003). Negotiation-based routing in job shops via collaborative agents. Journal of Intelligent Manufacturing. doi:10.1023/A:1025705426184.
  58. Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, doi:10.1287/opre.40.1.113.
  59. Vazquez, M., & Whitley, L. D. (2000). A comparison of genetic algorithms for the static job shop scheduling problem. In Parallel Problem Solving from Nature Conference 2000 (PPSN VI) (pp. 303–312).Google Scholar
  60. Wang L., Zheng D. Z. (2001) An effective hybrid optimization strategy for job shop scheduling problems. Computers and Operationas Research 28: 585–596CrossRefGoogle Scholar
  61. Watson J. P., Beck C., Howe A. E., Whitley L. D. (2003) Problem difficulty for Tabu search in job-shop scheduling. Artificial Intelligence 143(2): 189–217CrossRefGoogle Scholar
  62. Watson, J. P., Howe, A. E., & Whitley, L. D. (2006). Deconstructing Nowicki and Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem. Computers and Operations Research. doi:10.1016/j.cor.2005.07.016.
  63. Weckman, G., Ganduri, C., & Koonce, D. (2008). A neural network job-shop scheduler. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0073-9.
  64. Wenqi, H., & Aihua, Y. (2004). An improved shifting bottleneck procedure for the job shop scheduling problem. Computers and Operations Research. doi:10.1016/S0305-0548(03)00243-0.
  65. Yang S., Wang D. (2000) Constraint satisfaction adaptive neural network and heuristics combined approach for generalized job shop scheduling. IEEE Trans. on Neural Networks 11: 474–486CrossRefGoogle Scholar
  66. URL: Further explanations about JSSP; October 2009; www.eis.uva.es/elena/JSSP.
  67. URL: Further explanations about MMGAs; October 2009; www.eis.uva.es/elena/MMGAs.
  68. URL: Optima solutions of la01-la05, mt06, mt10 ad mt20;October 2009; www.eis.uva.es/elena/JSSP/optima.htm.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department Organización de Empresas y C.I.MUniversity of ValladolidValladolidSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations