Advertisement

Journal of Intelligent Manufacturing

, Volume 23, Issue 1, pp 49–60 | Cite as

Buffer sizing of a Heijunka Kanban system

  • Judith Matzka
  • Maria Di Mascolo
  • Kai Furmans
Article

Abstract

Heijunka is a key-element of the Toyota production system which levels the release of production kanbans in order to achieve an even production flow over all possible types of products, thus, e.g. reducing the bullwhip effect. In this paper we analyze a kanban controlled and heijunka leveled production system where the arriving demands are controlled and limited by a kanban loop. The production system is modeled as a queueing network with synchronization stations. The aim is to determine the optimal number of production kanbans, and thus the buffer size that guarantees a given service level.

Keywords

Queueing network Performance evaluation Optimization Kanban Heijunka 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akturk M. S., Erhun F. (1999) An overview of design and operational issues of kanban systems. International Journal of Production Research 37(17): 3859–3881CrossRefGoogle Scholar
  2. Bard J. F., Golany B. (1991) Determining the number of kanbans in a multiproduct, multistage production system. International Journal of Production Research 29(5): 881–895CrossRefGoogle Scholar
  3. Berkley B. J. (1992) A review of the kanban production control research literature. Production and Operations Management 1(4): 393–411CrossRefGoogle Scholar
  4. Bitran G. R., Chang L. (1987) A mathematical programming approach to a deterministic kanban system. Management Science 33(4): 427–441CrossRefGoogle Scholar
  5. Bollon J. M., Di Mascolo M., Frein Y. (2004) Unified framework for describing and comparing the dynamics of pull control policies. Annals of Operation Research, Special Issue on Stochastic Models of Production-Inventory Systems 125: 21–45Google Scholar
  6. Bonvik, A. M. (1996). Performance analysis of manufacturing systems under hybrid control policies. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  7. Buzacott J. A. (1989) Queueing models of kanban and MRP controlled manufacturing systems. Engineering Cost and Production Economics 17: 3–20CrossRefGoogle Scholar
  8. Coleman, B. J., & Vaghefi, M. R. (1994). Heijunka (?): A key to the Toyota production system. Production and Inventory Management Journal, 31–35.Google Scholar
  9. Dallery Y., Liberopoulos G. (2000) Extended kanban control system: Combining kanban and base stock. IIE Transactions on Design and Manufacturing 32: 369–386Google Scholar
  10. Davis W. J., Stubitz S. J. (1987) Configuring a kanban system using a discrete optimization of multiple stochastic responses. International Journal of Production Research 25(5): 721–740CrossRefGoogle Scholar
  11. De Araujo, S. L., Frein, Y., & Di Mascolo, M. (1995). Efficient procedures for the design of kanban systems. International Conference on Industrial Engineering and Production Management, Marrakech, 511–520Google Scholar
  12. De Smet R., Gelders L. (1997) Evaluation of the role of waste in a truck manufacturing line using simulation. Journal of Intelligent Manufacturing 8(5): 449–458CrossRefGoogle Scholar
  13. Di Mascolo M., Frein Y., Dallery Y. (1996) An analytical method for performance evaluation of kanban controlled production systems. Operations Research 44(1): 50–64CrossRefGoogle Scholar
  14. Di Mascolo M. (1996) Analysis of a synchronization station for the performance evaluation of a kanban system with a general arrival process of demands. European Journal of Operational Research 89(1): 147–163CrossRefGoogle Scholar
  15. Duri C., Frein Y., Di Mascolo M. (2000) Comparison among three pull control policies: Kanban, base stock, and generalized kanban. Annals of Operations Research 93: 41–69CrossRefGoogle Scholar
  16. Framinan J. M., Gonzalez P. L., Ruiz-Usano R. (2003) The CONWIP production control system: Review and research issues. Production Planning and Control 14(3): 255–265CrossRefGoogle Scholar
  17. Furmans K. (2005) Models of heijunka-levelled kanban-systems. 5th International conference on analysis of manufacturing systems—Production management, Zakynthos Island, Greece.Google Scholar
  18. Gaury E. G. A., Pierreval H., Kleijnen P. C. (2000) An evolutionary approach to select a pull system among kanban, conwip and hybrid. Journal of Intelligent Manufacturing 11: 157–167CrossRefGoogle Scholar
  19. Huang C. C., Kusiak A. (1996) Overview of kanban systems. International Journal of Computer Integrated Manufacturing 9: 169–189CrossRefGoogle Scholar
  20. Ip W. H., Huang M., Ying K. L., Wang D., Wang X. (2007) CONWIP based control of a lamp assembly production line. Journal of Intelligent Manufacturing 18: 261–271CrossRefGoogle Scholar
  21. Kimura O., Terada H. (1981) Design and analysis of pull system: A method of multistage production control. International Journal of Production Research 19: 241–253CrossRefGoogle Scholar
  22. Khojasteh-Ghamari, Y. (2008). A performance comparison between Kanban and CONWIP controlled assembly systems. Journal of Intelligent Manufacturing. Published online Sept 2008. doi: 10.1007/s10845-008-0174-5.
  23. Liker J. K. (2004) The Toyota way, 14 management principles from the worlds greatest manufacturer, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  24. Lippolt C. R., Furmans K. (2008) Sizing of heijunka-controlled production systems with unreliable production processes, in IFIP international federation for information processing. Lean Business Systems and Beyond 257: 11–19CrossRefGoogle Scholar
  25. Monden Y. (1981) Adaptable kanban system helps Toyota maintain just-in-time production. Industrial Engineering 13(5): 29–46Google Scholar
  26. Monden Y. (1998) Toyota production system: An integrated approach to just-in-time, 3rd edn. Engineering and Management Press, Norcross, GeorgiaGoogle Scholar
  27. Ohno T. (1988) Toyota production system: Beyond large-scale production. Productivity Press, Cambridge, MassachusettsGoogle Scholar
  28. Paris J. L., Pierreval H. (2001) A distributed evolutionary simulation optimisation approach for the configuration of multiproduct kanban systems. International Journal of Computer Integrated Manufacturing 14: 421–430CrossRefGoogle Scholar
  29. Rother M., Shook J. (2003) Learning to see. Lean Enterprise Institute, Cambridge, MassachusettsGoogle Scholar
  30. Schonberger R. J. (1982a) The transfer of Japanese manufacturing management approaches to US industry. Academy of Management Review 7(3): 479–487Google Scholar
  31. Schonberger R. J. (1982b) Japanese manufacturing techniques: Nine hidden lessons in simplicity. The Free Press, New YorkGoogle Scholar
  32. Sendil Kumar C., Panneerselvam R. (2007) Literature review of JIT-KANBAN system. The International Journal of Advanced Manufacturing Technology 32(3–4): 393–408CrossRefGoogle Scholar
  33. Shahabudeen P., Krishnaiah K., Thulasi Narayanan M. (2003) Design of a two-card dynamic kanban system using a simulated annealing algorithm. International Journal of Advanced Manufacturing Technology 21(10–11): 754–759CrossRefGoogle Scholar
  34. Spearman M., Woodruff D., Hopp W. (1990) CONWIP: A pull alternative to kanban. International Journal of Production Research 28: 879–894CrossRefGoogle Scholar
  35. Wang H., Wang H. P. (1990) Determining the number of kanbans: A step toward non-stock-production. International Journal of Production Research 28(11): 2101–2115CrossRefGoogle Scholar
  36. Wang H., Wang H. P. (1991) Optimum number of kanbans between two adjacent workstations in a JIT system. International Journal of Production Economics 22(3): 179–188CrossRefGoogle Scholar
  37. Wang S., Sarker B. R. (2006) Optimal models for a multi-stage supply chain system controlled by kanban under just-in-time philosophy. European Journal of Operations Research 172(1): 179–200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Fördertechnik und LogistiksystemeUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Laboratoire G-SCOP (Grenoble-Sciences pour la Conception, l’Optimisation et la Production) 46GRENOBLE cedex 1France

Personalised recommendations