Journal of Intelligent Manufacturing

, Volume 21, Issue 6, pp 745–760 | Cite as

Improving the industrial classification of cork stoppers by using image processing and Neuro-Fuzzy computing

  • Beatriz Paniagua
  • Miguel A. Vega-Rodríguez
  • Juan A. Gomez-Pulido
  • Juan M. Sanchez-Perez


This paper presents a solution to a problem existing in the cork industry: cork stopper/disk classification according to their quality using a visual inspection system. Cork is a natural and heterogeneous (remarkable variability among different samples, being impossible to find two samples with the same morphological distribution in its defects) material; therefore, its automatic classification (seven quality classes exist) is very difficult. The solution proposed in this paper evaluates the following procedures: quality discriminatory features extraction and classifiers analysis. Each procedure focused on the study of aspects that could influence cork quality. Experiments show that the best results are obtained by system specific features: cork area occupied by defects (after thresholding), size of the biggest defect within the cork area (morphological operations), and the Laws TEMs E5L5TR, E5E5TR, S5S5TR, W5W5TR, all working on a Neuro-Fuzzy classifier. In conclusion, the results of this study represent an important contribution to improve quality control in the cork industry.


Stopper quality Cork industry Image processing Neuro-Fuzzy classifier Automated visual inspection system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASECOR (Agrupación Sanvicenteña de Empresarios del CORcho). (2007). Production statistics in the term 2007. Acceded 22 December 2007.
  2. Asteriadis, S., Karpouzis, K., & Kollias, S. D. (2008). A Neuro-Fuzzy approach to user attention recognition. In 18th international conference, ICANN2008 (Vol. 1, pp. 927–936), Prague, Czech Republic.Google Scholar
  3. Berberoğlu, S., & Satir, B. (2008). Fuzzy classification of Mediterranean type forest using Envisat Meris Data. In International archives of the photogrammetry, remote sensing and spatial information sciences (ISPRS 2008) (Vol. XXXVII, pp. 1109–1119).Google Scholar
  4. Bouharati, S., Benmahammed, K., Harzallah, D., & El-Assaf, Y. M. (2008). Application of artificial Neuro-Fuzzy logic inference system for predicting the microbiological pollution in fresh water. Journal of Applied Sciences, 8(2), 309–315.CrossRefGoogle Scholar
  5. Brunetti, A., Cesareo, R., Golosio, B., Luciano, P., & Ruggero, A. (2002). Cork quality estimation by using Compton tomography. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 196, 161–168. doi: 10.1016/S0168-583X(02)01289-2.CrossRefGoogle Scholar
  6. Chang, J., Han, G., Valverde, J. M., Griswold, N. C., Duque-Carrillo, J. F., & Sánchez-Sinencio, E. (1997). Cork quality classification system using a unified image processing and fuzzy-neural Network methodology. IEEE Transactions on Neural Networks, 8(4), 964–974. doi: 10.1109/72.595897.CrossRefGoogle Scholar
  7. Cheu, E. Y., Quek, C., & Ng, S. K. (2008). TNFIS: Tree based neural fuzzy inference system. In IEEE international joint conference on neuronal networks, IJCNN 2008 (pp. 398–405).Google Scholar
  8. Chow, C. K., & Kaneko, T. (1972). Automatic boundary detection of left ventricle from cineangiograms. Computers and Biomedical Research, 5, 338–410.CrossRefGoogle Scholar
  9. CorkQC (The Natural Cork Quality Council). (2008). Industry statistics. Acceded 3 March 2008.
  10. Corona, P., Dettori, S., Filigheddu, M. R., Maetzke, F., & Scotti, R. (2005). Site quality evaluation by classification tree: An application to cork quality in Sardinia. European Journal of Forest Research, 124, 37–46.CrossRefGoogle Scholar
  11. Costa, A., & Pereira, H. (2006). Decision rules for computer-vision quality classification of wine natural cork stoppers. American Journal of Enology and Viticulture, 57, 210–219.Google Scholar
  12. Dragomir, O., Gouriveau, R., & Zerhouni, N. (2008). Adaptive Neuro-Fuzzy inference system for midterm prognostic error stabilization. In International conference on computers, communications and control, ICCCC08 (pp. 1–6), Baile Felix, Oradea, Romania.Google Scholar
  13. Durán, M. L., Cernadas, E., Caro, A., & Antequera, T. (2001). Clasificación de Distintos Tipos de Jamón Ibérico Utilizando Análisis de Texturas. Revista Electrónica de Visión por Computador, 5, 1–11. REVC.Google Scholar
  14. Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2004) HIPR2: Image processing learning resources. Acceded 20 September 2005.
  15. Fortes, M. A. (1993). Cork and corks. European Review (Chichester, England), 1, 189–195.Google Scholar
  16. Gonzalez-Adrados, J. R., Lopes, F., & Pereira, H. (2000). The quality grading of cork planks with classification models based on defect characterization. Holz als Roh- und Werkstoff, 58, 39–45.CrossRefGoogle Scholar
  17. Habib, H. A., Yousaf, M. H., & Mohibullah, M. (2004). Modified laws energy descriptor for inspection of ceramic tiles. In National conference on emerging technologies (pp. 137–140), Pakistan.Google Scholar
  18. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610–621. doi: 10.1109/TSMC.1973.4309314.CrossRefGoogle Scholar
  19. ICMC (Instituto del Corcho.Madera y Carbón Vegetal, Instituto de Promoción del Corcho, ICMC-IPROCOR). (2008). Acceded 3 March 2008.
  20. Jang, J.-S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and soft computing. New Jersey: Prentice Hall.Google Scholar
  21. Johannsen, G., & Bille, J. (1982). A thresholding selection method using information measures. Proc. 6th international conference on pattern recognition (pp. 140–143).Google Scholar
  22. Kapur, J. N., Sahoo, P. K., & Wong, A. K. C. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision Graphics and Image Processing, 29, 273–285. doi: 10.1016/0734-189X(85)90125-2.CrossRefGoogle Scholar
  23. Kumar, S., Kumar, S., Prakash, Shankar, R., Tiwari, M. K., & Kumar, S. B. (2007). Prediction of flow stress for carbon steels using recurrent self-organizing neuro fuzzy networks. Expert Systems with Applications: An International Journal, 32(3), 777–788. doi: 10.1016/j.eswa.2006.01.041.CrossRefGoogle Scholar
  24. Laws, K. I. (1980). Rapid texture identification. SPIE Image Processing for Missile Guidance, 238, 376–380.Google Scholar
  25. Lima, J. L., & Gomes-Costa, P. (2005). A modular approach to real-time cork classification using image processing. In 10th IEEE conference on emerging technologies and factory automation (Vol. 2, pp. 361–368).Google Scholar
  26. Lin, C. J., Chen, C., & Lee, C. (2008). Classification and medical diagnosis using wavelet-based fuzzy neural networks. International Journal of Innovative Computing. Information and Control, 4(3), 735–748. ICIC International.Google Scholar
  27. Marpu, P. R., Wijaya, A., & Gloaguen, R. (2008). Soft classification and assessment of kalman filter neural network for complex landcover of tropical rainforests. In International geoscience and remote sensing symposium (IGARSS 2008), Boston, USA.Google Scholar
  28. Maxwell, B. A., & Brubaker, S. J. (2003). Texture edge detection using the compass operator. In British machine vision conference (Vol. 2, pp. 549–558), Norwich.Google Scholar
  29. Monzon, J. E., & Pisarello, M. I. (2004). Identificación de Latidos Cardíacos Anómalos con Redes Neuronales Difusas. Comunicaciones Científicas y Tecnológicas, E-038 [in Spanish]. Chaco-Corrientes, Argentina: Universidad Nacional del Nordeste.Google Scholar
  30. Niemistö, A. (2004). A comparison of nonparametric histogram-based thresholding algorithms, Technical report. Finland: Tampere University of Technology.Google Scholar
  31. Otsu, N. (1978). A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, 62–66.Google Scholar
  32. Paniagua-Paniagua, B., Vega-Rodríguez, M. A., Gómez Pulido, J. A., & Sánchez Pérez, J. M. (2006a). Comparative study of second-order grey level texture statistics to evaluate cork quality. In Visualization, imaging, and image processing (VIIP 2006) (Vol. 1, pp. 447–452).Google Scholar
  33. Paniagua-Paniagua, B., Vega-Rodríguez, M. A., Gómez Pulido, J. A., & Sánchez Pérez, J. M. (2006b). Comparative study of thresholding techniques to evaluate cork quality. In Visualization, imaging, and image processing (VIIP 2006) (Vol. 1, pp. 447–452).Google Scholar
  34. Pereira, H., Melo, B., & Pinto, R. (1994). Yield and quality in the production of cork stoppers. Ausbeute und Qualität bei der Herstellung von Korkstopfen. Holz als Roh- und Werkstoff, 52, 211–214.CrossRefGoogle Scholar
  35. Pun, T. (1980). A new method for gray-level picture thresholding using the entropy of the histogram. Signal Processing, 2, 223–237. doi: 10.1016/0165-1684(80)90020-1.CrossRefGoogle Scholar
  36. Pun, T. (1981). Entropic thresholding: A new approach. Computer Vision Graphics and Image Processing, 16, 210–239. doi: 10.1016/0146-664X(81)90038-1.CrossRefGoogle Scholar
  37. Radeva, P., Bressan, M., Tobar, A., & Vitrià, J. (2002). Real-time inspection of cork stoppers using parametric methods in high dimensional spaces. In The IASTED conference on signal and image processing.Google Scholar
  38. Rocha, S., Delgadillo, I., Ferrer Correia, A. J., Barros, A., & Wells, P. (1998). Application of an electronic aroma sensing system to cork stopper quality control. Journal of Agricultural and Food Chemistry, 46, 145–151. doi: 10.1021/jf970259+.CrossRefGoogle Scholar
  39. Rosenfeld, P. (1983). Histogram concavity analysis as an aid in threshold selection. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 231–235.Google Scholar
  40. Sahoo, P. K., Soltani, S., Wong, A. K. C., & Chen, Y. C. (1988). A survey of thresholding techniques. Computer Vision Graphics and Image Processing, 41, 233–260. CVGIP. doi: 10.1016/0734-189X(88)90022-9.
  41. Schmid, C. (2001). Constructing models for content-based image retrieval. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2, 39–45.Google Scholar
  42. Shah, S. K., & Gandhi, V. (2004). Image classification based on textural features using artificial neural network (ANN). IE(I). Journal-ET, 84, 72–77.Google Scholar
  43. Shapiro, L. G., & Stockman, G. C. (2001). Computer vision. New Jersey: Prentice Hall.Google Scholar
  44. Sonka, M., Hlavac, V., & Boyle, R. (1998). Image processing, analysis and machine vision (2nd ed.). USA: PWS Publishing.Google Scholar
  45. Tsai, W. (1985). Moment-preserving thresholding, a new approach. Computer Vision Graphics and Image Processing, 29, 377–393. doi: 10.1016/0734-189X(85)90133-1.CrossRefGoogle Scholar
  46. Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62, 61–81.Google Scholar
  47. Vega-Rodríguez, M. A., Sánchez-Pérez, J. M., & Gómez-Pulido, J. A. (2004). Using computer vision and FPGAs in the cork industry. Proceedings of the IEEE mechatronics and robotics (pp. 265–270).Google Scholar
  48. Wood, E. J., Siew, L. H., & Hodgson, R. M. (1988). Texture measures for carpet wear assessment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 92–105. doi: 10.1109/34.3870.CrossRefGoogle Scholar
  49. Woodford, B. J., Deng, D., & Benwell, G. L. (2004). A wavelet-based Neuro-Fuzzy system for data mining small image sets. In M. Purvis (Ed.), Proc. Australasian workshop on data mining and web intelligence (DMWI2004) (Vol. 32, pp. 139–143). Dunedin, New Zealand: CRPIT, ACS.Google Scholar
  50. Wu, C. M., Chen, Y. C., & Hsieh, K. S. (1992). Texture features for classification of ultrasonic liver images. IEEE Transactions on Medical Imaging, 11, 141–152. doi: 10.1109/42.141636.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Beatriz Paniagua
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  • Juan A. Gomez-Pulido
    • 1
  • Juan M. Sanchez-Perez
    • 1
  1. 1.Department of Technologies of Computers and CommunicationsUniversity of ExtremaduraCáceresSpain

Personalised recommendations