Journal of Intelligent Manufacturing

, Volume 20, Issue 5, pp 611–623 | Cite as

Applying semantic web technologies to knowledge sharing in aerospace engineering

  • A.-S. Dadzie
  • R. Bhagdev
  • A. Chakravarthy
  • S. Chapman
  • J. Iria
  • V. Lanfranchi
  • J. Magalhães
  • D. Petrelli
  • F. Ciravegna
Article

Abstract

This paper details an integrated methodology to optimise knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses ontologies as a central modelling strategy for the capture of knowledge from legacy documents via automated means, or directly in systems interfacing with knowledge workers, via user-defined, web-based forms. The domain ontologies used for knowledge capture also guide the retrieval of the knowledge extracted from the data using a semantic search system that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale.

Keywords

Information extraction Semantic web Aerospace engineering Hybrid search Ontology search Information retrieval Knowledge acquisition Knowledge management Knowledge reuse Knowledge sharing Ontology Knowledge organisation Usability evaluation System evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arasu A. and Garcia-Molina A.H. (2003). Extracting structured data from web pages. ACM SIGMOD international conference on management of data, San Diego, California Google Scholar
  2. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American.Google Scholar
  3. Bhagdev, R., Butters, J., Chakravarthy, A., Chapman, S., Dadzie, A.-S. et al. (2007). Doris: Managing document-based knowledge in large organisations via semantic web technologies. 6th international semantic web conference ISWC 2007 (Semantic Web Challenge Track), Busan, Korea.Google Scholar
  4. Broekstra J. and Kampman A. (2003). SeRQL: A second generation RDF query language. SWAD-Europe workshop on semantic web storage and retrieval, Amsterdam, Netherlands Google Scholar
  5. Chakravarthy, A., Lanfranchi, V., & Ciravegna, F. (2006). Cross-media document annotation and enrichment. 1st semantic authoring and annotation workshop, Proc., ISWC 2006.Google Scholar
  6. Chapman, S. (2004). SimMetrics: A similarity library of metric algorithms for integration and comparison, http://www.dcs.shef.ac.uk/~sam/simmetrics.html.
  7. Crescenzi, V., Mecca, G., & Merialdo, P. (2001). RoadRunner: Towards automatic data extraction from large web sites. International conference on very large data bases.Google Scholar
  8. Corcho, Ó., Gómez-Pérez, A., López-Cima, A., López-García, V., & Suárez-Figueroa, M. C. (2003). ODESeW. Automatic generation of knowledge portals for intranets and extranets. Proceedings of the International Semantic Web Conference, ISWC 2003, Sanibel Island, Florida, USA.Google Scholar
  9. Ducatel, G., Cui, Z., & Azvine, B. (2006). Hybrid ontology and keyword matching indexing system. Proceedings of the 15th International World Wide Web Conference, WWW 2006: Workshop IntraWebs 2006, Edinburgh, Scotland.Google Scholar
  10. Dumas, M., Aldred, L., Heravizadeh, M., & ter Hofstede, A. H. M. (2002). Ontology markup for web forms generation. Proceedings, WWW’02 Workshop on Real-world Applications of RDF and the Semantic Web.Google Scholar
  11. Giuliano, C., Lavelli, A., & Romano, L. (2006). Exploiting shallow linguistic information for relation extraction from biomedical literature. Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), Trento, Italy.Google Scholar
  12. Greenwood, M. A., & Iria, J. (2008). Saxon: An Extensible Multimedia Annotator (to appear in) Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC 2008, Marrakech, Morocco.Google Scholar
  13. Gupta S., Hawker J.S. and Smith R.K. (2005). Acquiring and delivering lessons learned for NASA scientists and engineers: A dynamic approach. ACM Southeast Regional Conference 2: 370–375 Google Scholar
  14. Hendler J. (2001). Agents and the semantic web. IEEE Intelligent Systems 16(2): 30–37 CrossRefGoogle Scholar
  15. Iria, J., & Ciravegna, F. (2006). A methodology and tool for representing language resources for information extraction. Proceedings of the LREC 2006.Google Scholar
  16. Iria, J., Ireson, N., & Ciravegna, F. (2006). An experimental study on boundary classification algorithms for information extraction using SVM. Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics.Google Scholar
  17. Kiryakov, A., Popov, B., Ognyano, D., Manov, D., Kirilov, A., & Goranov, M. (2003). Semantic annotation, indexing, and retrieval. Proceedings of the International Semantic Web Conference, ISWC 2003, Sanibel Island, Florida, USA.Google Scholar
  18. Kiryakov, A., Popov, B., Dimitar, M., Ognyanoff, D., Marinov, R., & Terziev, I. (2004). Automatic semantic annotation with KIM. Proceedings of the 3rd International Semantic Web Conference, ISWC 2004: Demo Papers, Hiroshima, Japan.Google Scholar
  19. Laender A.H.F., Ribeiro-Neto B.A., da Silva A.S. and Teixeira J.S. (2002). A brief survey of web data extraction tools. ACM SIGMOD Record 31: 84–93 CrossRefGoogle Scholar
  20. Lanfranchi, V., Ciravegna, F., & Petrelli, D. (2005). Semantic web-based document editing and browsing in AktiveDoc. 2nd European Semantic Web Conference ESWC.Google Scholar
  21. Lanfranchi, V., Bhagdev, R., Chapman, S., Ciravegna, F., & Petrelli, D. (2007). Extracting and searching knowledge for the aerospace industry. Proceedings of the ESTC 2007.Google Scholar
  22. Magalhães J. and Rüger S. (2007). Information-theoretic semantic multimedia indexing. ACM conference on image and video retrieval, Amsterdam, Holland Google Scholar
  23. Manjunath, B. S., Salembier, P., & Sikora, T. (2002). Introduction to MPEG 7: Multimedia content description language. Wiley.Google Scholar
  24. Manning C. and Schütze H. (1999). Foundations of statistical natural language processing. MIT Press, Cambridge, MA Google Scholar
  25. Naphade M.R. and Huang T.S. (2001). A probabilistic framework for semantic video indexing filtering and retrieval. IEEE Transactions on Multimedia 3: 141–151 CrossRefGoogle Scholar
  26. Preisach C. and Schmidt-Thieme L. (2006). Relational ensemble classification. IEEE international conference on data mining, Hong Kong, China Google Scholar
  27. Rosenfeld B., Feldman R. and Aumann J. (2002). Structural extraction from visual layout of documents. ACM CIKM, McLean, Virginia, USA Google Scholar
  28. Tengli, A., Yang, Y., & N. Ma, L. (2004) Learning table extraction from examples. Geneva, Switzerland: (COLING’04).Google Scholar
  29. Xu J. and Huang Y. (2006). Using SVM to extract acronyms from text. Soft Computing 11(4): 369–373 CrossRefGoogle Scholar
  30. The WIT tools page: http://nlp.shef.ac.uk/wig/tools.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A.-S. Dadzie
    • 1
  • R. Bhagdev
    • 1
  • A. Chakravarthy
    • 1
  • S. Chapman
    • 1
  • J. Iria
    • 1
  • V. Lanfranchi
    • 1
  • J. Magalhães
    • 1
  • D. Petrelli
    • 2
  • F. Ciravegna
    • 1
  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK
  2. 2.Department of Information StudiesThe University of SheffieldSheffieldUK

Personalised recommendations