Advertisement

Journal of Intelligent Manufacturing

, Volume 18, Issue 3, pp 411–420 | Cite as

HBBA: hybrid algorithm for buffer allocation in tandem production lines

  • Alexandre DolguiEmail author
  • Anton V. Eremeev
  • Viatcheslav S. Sigaev
Article

Abstract

In this paper, we consider the problem of buffer space allocation for a tandem production line with unreliable machines. This problem has various formulations all aiming to answer the question: how much buffer storage to allocate between the processing stations? Many authors use the knapsack-type formulation of this problem. We investigate the problem with a broader statement. The criterion depends on the average steady-state production rate of the line and the buffer equipment acquisition cost. We evaluate black-box complexity of this problem and propose a hybrid optimization algorithm (HBBA), combining the genetic and branch-and-bound approaches. HBBA is excellent in computational time. HBBA uses a Markov model aggregation technique for goal function evaluation. Nevertheless, HBBA is more general and can be used with other production rate evaluation techniques.

Keywords

Production line Buffer allocation NP completeness Black-box complexity Genetic algorithm Branch-and-Bound method Hybrid algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altiok T. (1996). Performance analysis of manufacturing systems. New York, SpringerGoogle Scholar
  2. Buzacott J.A., Hanifin L.E. (1978). Models of automatic transfer lines with inventory banks: A review and comparison. AIIE Transactions 10(2): 197–207Google Scholar
  3. Buzacott J.A., Shanthikumar J.G. (1993). Stochastic models of manufacturing systems. New Jersey, Prentice HallGoogle Scholar
  4. Coillard P., Proth J.M. (1984). Effet des stocks tampons dans une fabrication en ligne. Revue belge de Statistique, d’Informatique et de Recherche Opérationnelle 24(2): 3–27Google Scholar
  5. Dallery Y., David R., Xie X. (1989). Approximate analysis of transfer lines with unreliable machines and finite buffers. IEEE Transactions on Automatic Control, 34: 943–953CrossRefGoogle Scholar
  6. Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: A review of models and analytical results. Queuing systems theory and applications, 12, 3–94 (Special Issue on Queuing Model of Manufacturing Systems).Google Scholar
  7. De Koster M.B.M. (1987). Estimation of line efficiency by aggregation. International Journal of Production Research, 25, 615–626CrossRefGoogle Scholar
  8. Dolgui, A. (1993). Analyse de performances d’un atelier de production discontinue: méthode et logiciel, Research Report INRIA 1949, 44 pp.Google Scholar
  9. Dolgui A., Eremeev A., Kolokolov A., Sigaev V. (2002). A genetic algorithm for the allocation of buffer storage capacities in a production line with unreliable machines. Journal of Mathematical Modelling and Algorithms, 1(2): 89–104CrossRefGoogle Scholar
  10. Dolgui, A. B., & Svirin, Y. P. (1995). Models of evaluation of probabilistic productivity of automated technological complexes. Vesti Akademii Navuk Belarusi: phisika-technichnie navuki, 1, 59–67 (in Russian).Google Scholar
  11. Droste S., Jansen T., Wegener I. (2006). Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems, 39(4): 525–544CrossRefGoogle Scholar
  12. Dubois D., Forestier J.P. (1982). Productive et en-cours moyens d’un ensemble de deux machines séparées par une zone de stockage. RAIRO Automatique 16(2): 105–132Google Scholar
  13. Garey M.R., Johnson D.S. (1979). Computers and intractability. A guide to the theory of NP-completeness. San Francisco, W.H. Freeman and CompanyGoogle Scholar
  14. Gershwin S.B. (1987). An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Operations Research 35(2): 291–305CrossRefGoogle Scholar
  15. Gershwin S.B. (1994). Manufacturing systems engineering. New Jersey, Prentice HallGoogle Scholar
  16. Gershwin S.B., Schor J.E. (2000). Efficient algorithms for buffer space allocation. Annals of Operations Research 93:117–144CrossRefGoogle Scholar
  17. Glasserman P., Yao D.D. (1996). Structured buffer-allocation problems. Journal of Discrete Event Dynamic Systems 6, 9–42CrossRefGoogle Scholar
  18. Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers.Google Scholar
  19. Helber S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines. International Journal of Production Research 39, 3061–3083CrossRefGoogle Scholar
  20. Inman R.R. (1999). Empirical evaluation of exponential and independence assumptions in queueing model of manufacturing systems. Production and Operations Management 8(4): 409–432CrossRefGoogle Scholar
  21. Jafari M.A., Shanthikumar J.G. (1989). Determination of optimal buffer storage capacities and optimal allocation in multistage automatic transfer lines. IIE Transactions 21(2): 130–135CrossRefGoogle Scholar
  22. Levin, A. A., & Pasjko, N. I. (1969). Calculating the output of transfer lines. Stanki i Instrument, 8, 8–10 (in Russian).Google Scholar
  23. Li J. (2005). Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems. IEEE Transactions on Automation Science and Engineering 2(1): 40–53CrossRefGoogle Scholar
  24. Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge University Press.Google Scholar
  25. Papadopoulos H. T., Heavey C. (1996). Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines. European Journal of Operational Research 92:1–27CrossRefGoogle Scholar
  26. Patchong A., Lemoine T., Kern G. (2003). Improving car body production at PSA Peugeot Citroen. Interfaces 33(1): 36–49CrossRefGoogle Scholar
  27. Reeves C.R. (1993). Modern heuristic techniques for combinatorial problems. New York, NY, John Wiley & SonsGoogle Scholar
  28. Shi L., Men S. (2003). Optimal buffer allocation in production lines. IIE Transactions 35: 1–10CrossRefGoogle Scholar
  29. Sörensen K., Janssens G. K. (2004). A Petri net model of a continuous flow transfer line with unreliable machines. European Journal of Operational Research 152: 248–262CrossRefGoogle Scholar
  30. Spinellis D., Papadopoulos C. (2000). Stochastic algorithms for buffer allocation in reliable production lines. Mathematical Problems in Engineering 5:441–458CrossRefGoogle Scholar
  31. Tempelmeier H. (2003). Practical considerations in the optimization of flow production systems. International Journal of Production Research 41(1): 149–170CrossRefGoogle Scholar
  32. Terracol, C., & David, R. (1987). An aggregation method for performance valuation of transfer lines with unreliable machines and finite buffers. Proceedings of the IEEE International Conference on Robotics and Automation, 1333–1338.Google Scholar
  33. Vouros G.A., Papadopoulos H. T. (1998). Buffer allocation in unreliable production lines using a knowledge based system. Computers and Operations Research 25(12): 1055–1067CrossRefGoogle Scholar
  34. YamashitaH., Altiok T. (1998). Buffer capacity allocation for a desired throughput in production lines. IIE Transactions, 30, 883–891Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexandre Dolgui
    • 1
    Email author
  • Anton V. Eremeev
    • 2
  • Viatcheslav S. Sigaev
    • 3
  1. 1.Division for Industrial Engineering and Computer ScienceEcole des Mines de Saint EtienneSaint-Etienne Cedex 2France
  2. 2.Discrete Optimization LaboratoryOmsk Branch of Sobolev Institute of MathematicsOmskRussia
  3. 3.Department of MathematicsOmsk State UniversityOmskRussia

Personalised recommendations