Journal of Intelligent Manufacturing

, Volume 17, Issue 5, pp 571–583 | Cite as

Evaluation of techniques for manufacturing process analysis

  • J. C. Hernandez-MatiasEmail author
  • A. Vizan
  • A. Hidalgo
  • J. Rios


In the last 20 years, several methodologies, models and tools have been developed for the analysis and optimisation of manufacturing systems in order to propose general improvements. Many of these techniques make extensive use of data modelling, simulation, decision-making support, expert systems and reference models. This paper presents the first outcome of a piece of research work to integrate manufacturing process analysis into an integrated modelling framework covering all aspects related to the shop-floor as it really is. The main methodologies and software tools have been identified and evaluated and the results tested on industrial examples. As a result of this evaluation it has been possible to identify the inefficiencies of the techniques. These problems are connected with integrating the different types of data to be analysed—such as quality, time, costs, resource capacity, productivity, flexibility or improvements—into a single analysis environment. The inefficiencies detected enable us to present a general framework for making better use of modelling techniques for manufacturing process analysis.


IDEF BPM Process modelling Simulation Manufacturing analysis KPI’s 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Ahmari, A., Ridway, K. 1999An integrated modelling method to support manufacturing systems analysis and designComputers in Industry38225238CrossRefGoogle Scholar
  2. Aquilano, N., Chase, R. (1991). Fundamentals of operations management. Irwin.Google Scholar
  3. Barreiro, J., Labarga, J., Vizan, A., Rios, J. 2003Information model for the integration of inspection activity in a concurrent engineering frameworkInternational Journal of Machine Tools & Manufacture43797809CrossRefGoogle Scholar
  4. Bilberg, A., Alting, L. 1994A systematic method for renewal of production technologySessions on optimization of manufacturing systems. CIRP Annals43409412Google Scholar
  5. Blosch, M., Antony, J. 1999Experimental design and computer-based simulation: a case study with the Royal NavyManaging Service Quality9311319CrossRefGoogle Scholar
  6. Bosil, J., Giaglis, G., & Hlupic, V. (2000). IDEF diagrams and petri nets for business process modelling. In: Proceedings of the 2000 winter simulation conference (pp. 1676–1683).Google Scholar
  7. Brennan, R., Forough, B. 1999A control frame work to support responsive manufacturingInternational Journal of Agile Manufacturing Systems1159168CrossRefGoogle Scholar
  8. Busby, J. S. (1992). The value of advanced manufacturing technology. Butterworth–Heinemann.Google Scholar
  9. Carrie, A., Macintosh, R. 1997An assessment of GRAI grids and their use in the strathcycle integration methodProduction Planning and Control8106113CrossRefGoogle Scholar
  10. Colquhoun, G.J., Gamble, J.D., Braines, R.W. 1989The uses of IDEF0 to link design and manufacture in a CIM environmentInternational Journal of Operations and Production Management94865CrossRefGoogle Scholar
  11. Smet, R., Gelders, L. 1997Evaluation of the role of waste in a truck manufacturing line using simulationJournal of Intelligent Manufacturing8449458CrossRefGoogle Scholar
  12. Doumeingts, G. 1985How to decentralise decision through GRAI model in production managementComputers in Industry6501514CrossRefGoogle Scholar
  13. Doumeingts, G., Vallespir, B., Chen, D. 1995Methodologies for designing CIM system: a surveyComputers in Industry25263280CrossRefGoogle Scholar
  14. Felix, T.S., Bing, J. 2001The applications of flexible manufacturing technologies in business process reengineeringThe International Journal of Flexible Manufacturing Systems13131144CrossRefGoogle Scholar
  15. Gabbar, H.A., Yamashita, H., Suzuki, K., Shimada, Y. 2003Computer aided RCM-based plant maintenance management systemRobotics and Computer Integrated Manufacturing19449458CrossRefGoogle Scholar
  16. Girard, P., Doumeingts, G. 2004GRAI-engineering: a method to model, design an run engineering design departmentsInternational Journal of Computer Integrated Manufacturing17716732CrossRefGoogle Scholar
  17. Grabau, M. R., & Mauer, R. A. (1997). Using simulation to generate the data to balance an assembly line. In: Proceedings of the 1997 winter simulation conference (pp. 733–738).Google Scholar
  18. Guiachetti, R.E. 1999A standard manufacturing information model to support design for manufacturing in virtual enterprisesJournal of Intelligent Manufacturing104960CrossRefGoogle Scholar
  19. Guimaraes, T. 1997Empirically testing the antecedents of BPR successInternational Journal of Production Economics506568CrossRefGoogle Scholar
  20. Gunasekaran, A., Nath, B. 1997The role of information technology in business reengineeringInternational Journal of Production Economics591104CrossRefGoogle Scholar
  21. Gupta, A., Stahl, D.O., Whinston, A.B. 1997A decentralised approach to estimate activity based costs and near-optimal resource allocation in flexible manufacturing systemsInternational Journal of Flexible Manufacturing Systems9167193CrossRefGoogle Scholar
  22. Habchi, G., Berchet, C. 2003A model for manufacturing systems simulation with a control dimensionSimulation Modelling112144CrossRefGoogle Scholar
  23. Heredia, A. J. (1999). Indicator’s system to improving control process. Ph.D. Thesis. Alicante, Spain: Jaime I University.Google Scholar
  24. Hlupic, V., Paul, R.J. 1999Guidelines for selection of manufacturing simulation softwareIEE Transactions on Design and Manufacturing312129Google Scholar
  25. Howard, L., Lewis, H. 2003The development of a database system to optimise manufacturing processes during designJournal of Materials Processing Technology134374382CrossRefGoogle Scholar
  26. Irani, Z., Hlupic, V., Baldwin, L., Love, L. 2000Reengineering manufacturing processes through simulation modellingLogistics Information Management13713CrossRefGoogle Scholar
  27. Ito, Y. 2000Adaptative dynamic input–output analysis using neural networksKybernetes2910871102CrossRefGoogle Scholar
  28. Jackson, T. (1996). Corporate diagnosis; setting the global standard for excellence. Productivity Press.Google Scholar
  29. Jeong, K. 2000Conceptual frame for development of optimized simulation-based scheduling systemsExpert Systems with Applications18299306CrossRefGoogle Scholar
  30. Jahangirian, M., Conroy, G.V. 2000Intelligent dynamic scheduling system: the application of genetic algorithmsIntegrated Manufacturing Systems11247257CrossRefGoogle Scholar
  31. Johnny, K.C., Ip, W.H., Lee, T.C. 1998The development of an enterprise resources planning systems using a hierarchical design pyramidJournal of Intelligent Manufacturing9385399CrossRefGoogle Scholar
  32. Kang, H.W., Kim, J.W., Park, S.J. 1998Integrated modelling framework for manufacturing systems: A unified representation of the physical process and information systemThe International Journal of Flexible Manufacturing Systems10231265CrossRefGoogle Scholar
  33. Kim, C., Weston, R., Hodgson, A., Lee, K. 2003The complementary use of IDEF and UML modelling approachesComputers in Industry503556CrossRefGoogle Scholar
  34. Kusiak, A., Zakarian, A. 1996AA. Risk assessment of process modelsComputers Industrial Engineering30599610CrossRefGoogle Scholar
  35. Kusiak, A., Zakarian, A. 1996bReability evaluation of process modelsIEEE Transactions and Components, Packaging, and Manufacturing Technology. Part A19268275CrossRefGoogle Scholar
  36. Kwon, O.B., Lee, J.J. 2001A multi-agent intelligent system for efficient ERP maintenanceExpert Systems with Applications2191202CrossRefGoogle Scholar
  37. Labib, A.W., Williams, G.B., O’Connor, R.F. 1998An intelligent maintenance model (system): an application of the analytic hierarchy process and a fuzzy logic rule-based controllerJournal of the Operational Research Society49745757CrossRefGoogle Scholar
  38. Li, D.C., Wu, C., Torng, K.Y. 1997Using and unsupervised neural network and decision tree as knowledge acquisition tools for FMS schedulingInternational Journal of Systems Science28977985Google Scholar
  39. Lingineni, M., Caraway, B., & Benhamin, P. C. (1995). A tutorial on Prosim: a knowledge-based simulation model design. In: Proceedings of the 1995 winter simulation conference (pp. 408–402).Google Scholar
  40. Ma, Z., Zhang, W., Ma, W. 2002Extending IDEF1X to model fuzzy dataJournal of Intelligent Manufacturing13295307CrossRefGoogle Scholar
  41. Mayer, R. J., & White, P. (1991). BPR and modelling: using an engineering approach to mitigate risk. Knowledge Base Systems.Google Scholar
  42. Mayer, R. J., & Menzel, C. P. (1995). Information integration for concurrent engineering (IICE) IDEF3 process description capture method report, Knowledge Based Systems Incorporated, Technical Report.Google Scholar
  43. Miltenburg, J. (1995). Manufacturing strategy. Productivity Press.Google Scholar
  44. Neely, A.B. 1992A simulation study of bottleneck schedulingInternational Journal of Production Economics26187192CrossRefGoogle Scholar
  45. NIST (1993). Integration definition for functional modelling (IDEF0). Federal Information Processing Standards Publications. FIPS PUB 183.Google Scholar
  46. Ould, M. A. (1995). Business processes: Modelling and analysis for reengineering and improvement. John Wiley and Sons Inc.Google Scholar
  47. Pendharkar, P.C. 1999A computational study on design and performance issues of multi-agent intelligent systems for dynamic scheduling environmentsExpert Systems with Applications16121133CrossRefGoogle Scholar
  48. Perera, T., Liyanage, K. 2000Methodology for rapid identification and collection of input data in the simulation of the manufacturing systemsSimulation Practice and Theory7645656CrossRefGoogle Scholar
  49. Rojas, F., & Martínez, A. I. (1998). From process modelling to enactment and simulation. In: Proceedings of the European simulation multiconference. Department of Computer Science, University of Manchester.Google Scholar
  50. Rozenfeld, H., Rentes, F., Konig, W. 1994Workflow modelling for advanced manufacturing concepts. Sessions on optimisation of manufacturing systemsCIRP Annals43385388Google Scholar
  51. Sarkis, J., Liles, D. 1995Using IDEF and QFD to develop and organizational decision support methodology for the strategic justification of computer-integrated technologiesInternational Journal of Project Management13177185CrossRefGoogle Scholar
  52. Seidel, R. 1998Productivity improvement in job shop production. Sessions on optimisation of manufacturing systemsCIRP Annals37421424CrossRefGoogle Scholar
  53. Silver, B. (1997). BPR tools add power to workflow automation. Industry Insider Report.Google Scholar
  54. Soon, T., Souza, R. 1997Intelligent simulation-based scheduling of work-cells: an approachIntegrated Manufacturing Systems9623CrossRefGoogle Scholar
  55. Tillal, E., Ray, P. 2001Evaluation of tools for modelling manufacturing systems design with multiple levels of detailThe International Journal of Flexible Manufacturing Systems13163176CrossRefGoogle Scholar
  56. Thompson, W. B. (1995). Introduction to witness and linking to process mapping tools. In: Proceedings of the 1995 winter simulation conference (pp. 462–466).Google Scholar
  57. Trischler, W. (1996). Understanding and applying value-added assessment. ASQ Press.Google Scholar
  58. Vernadat, F. 2002Enterprise modelling and integration (EMI): Current status and research perspectivesAnnual Reviews in Control261525CrossRefGoogle Scholar
  59. Vollmann, T., Dixon, R., & Nannu, A. (1989). Using the diagnostic tool. Manufacturing Executive Forum.Google Scholar
  60. Wiendahl, H., Ullmann, W. 1993Logistics performance measurement of shop floor activities. sessions on optimisation of manufacturing systemsCIRP Annals42509512Google Scholar
  61. Williams, E. J., & Naraya, R. (1997). Application of simulation to scheduling, sequencing and materials handling. In: Proceedings of the 1997 winter simulation conference (pp. 861–865).Google Scholar
  62. Tatsiopoulus, I.P., Panayiotou, N.A., Ponis, S.T. 2002A modelling and evaluation methodology for E-Commerce enabled BPRComputers in Industry49107121CrossRefGoogle Scholar
  63. Zakarian, A., Kusiak, A. 2000Analysis of process modelsIEEE Transactions on Electronics Packaging Manufacturing Computers & Industrial Engineering23137147CrossRefGoogle Scholar
  64. Zakarian, A., Kusiak, A. 2001Process analysis and reengineeringComputers & Industrial Engineering41135150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. C. Hernandez-Matias
    • 1
    Email author
  • A. Vizan
    • 1
  • A. Hidalgo
    • 2
  • J. Rios
    • 1
  1. 1.Department of Mechanical and Manufacturing Engineering, E. T. S. Ingenieros IndustrialesPolytechnical University of Madrid (UPM)MadridSpain
  2. 2.Department of Operations and Production Management, E. T. S. Ingenieros IndustrialesPolytechnical University of Madrid (UPM)MadridSpain

Personalised recommendations