Advertisement

Journal of Intelligent Manufacturing

, Volume 17, Issue 4, pp 429–439 | Cite as

A novel method for determining machine subgroups and backups with an empirical study for semiconductor manufacturing

  • Chen-Fu Chien
  • Chia-Yu Hsu
Article

Abstract

Wafer fabrication for semiconductor manufacturing consists of multiple layers, in which the displacements (i.e., overlay errors) between layers should be reduced to enhance the yield. Although it can reduce variance between layers by fixing the exposure machine (i.e. steeper or scanner), it is not practical to expose the wafer on the same machine from layer to layer for the lengthy fabrication process in real setting. Thus, there is a critical need to determine the similarity machine subgroups, in which appreciate backups for unexpected machine down can be also prioritized. This study aims to develop a novel methodology to fill this gap based on the proposed similarity measurement of systematic overlay errors and residuals. The proposed methodology was validated via empirical study in a wafer fab and the results showed practical viability of this approach.

Keywords

Overlay Similarity Machine Subgroups Modeling Semiconductor manufacturing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Sultan, K.S. 1997Hard clustering approach to the part family formation problemProduction Planning and Control8231236CrossRefGoogle Scholar
  2. Al-Sultan, K.S., Fedjki, C.A. 1997Genetic algorithm for the part family formation problemProduction Planning and Control8788796CrossRefGoogle Scholar
  3. Anderberg, M.R. 1973Cluster analysis for applicationsAcademic PressNew YorkGoogle Scholar
  4. Arnold, W.H. 1983Image placement differences between 1:1 projection aligners and 10:1 reduction wafer steppersProceedings of SPIE: Optical Microlithography3948798Google Scholar
  5. Ben-Arieh, D., Traintaphyllou, E. 1992Quantifying data for group technology with weighted fuzzy featuresInternational Journal of Production Research3012851299Google Scholar
  6. Chan, H.M., Milner, D.A. 1982Direct clustering algorithm for group formation in cellular manufacturingJournal of Manufacturing systems16574Google Scholar
  7. Chandrasekharan, M.P., RajaGopalan, R. 1986An ideal seed non-hierarchical clustering algorithm for cellular manufacturingInternational Journal of Production Research24451464Google Scholar
  8. Chien, C., Hsu, S., Deng, J. 2001A cutting algorithm for optimizing the wafer exposure patternIEEE Transactions on Semiconductor Manufacturing14157162CrossRefGoogle Scholar
  9. Chien, C., Lin, D., Liu, Q., Peng, C., Hsu, C., Huang, C. 2002Developing a data mining method for wafer binmap clustering and an empirical study in a semiconductor manufacturing fabJournal of the Chinese Institute of Industrial Engineers192338CrossRefGoogle Scholar
  10. Chien, C., Chang, K., Chen, C. 2003Design of a sampling strategy for measuring and compensating for overlay errors in semiconductor manufacturingInternational Journal of Production Research4125472561CrossRefGoogle Scholar
  11. Chien, C., Wu, J. 2003Analyzing repair decisions in the site imbalance problem of semiconductor test machinesIEEE Transactions on Semiconductor Manufacturing16704711CrossRefGoogle Scholar
  12. Johnson, R. A., Wichern, D. W. (1992). applied multivariate statistical analysis, 3rd edn. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  13. Kamal, S., Burke, L.I. 1996FACT: a new neural network-based clustering algorithm for group technologyInternational Journal of Production Research34919946Google Scholar
  14. Kiang, M.Y., Kulkarni, U.R., Tam, K.Y. 1995Self-organizing map network as an interactive clustering tool: an application to group technologyDecision Support Systems15351374CrossRefGoogle Scholar
  15. King, J.R. 1980Machine-component group formation in production flow analysis: an approach using a rank order clustering algorithmInternational Journal of Production Research18213232Google Scholar
  16. Kusiak, A. 1985The part families problem in flexible manufacturing systemsAnnals of Operational Research25561569Google Scholar
  17. Kusiak, A. 1987The generalized group technology conceptInternational Journal of Production Research25561569Google Scholar
  18. Kusiak, A., Cho, M. 1992Similarity coefficient algorithms for solving the group technology problemInternational Journal of Production Research3026332646Google Scholar
  19. Lin, Z., Wu, W. 1999Multiple linear regression analysis of the overlay accuracy modelIEEE Transaction on Semiconductor Manufacturing12229237CrossRefGoogle Scholar
  20. MacMillen, D., Ryden, W.D. 1982Analysis of image field placement deviations of a 5 ×  microlithographic reduction lensProceedings of SPIE: Optical Microlithography-Technology3347889Google Scholar
  21. McAuley, J. 1972Machine grouping for efficient productionThe Production Engineering525357CrossRefGoogle Scholar
  22. Moon, Y.B., Chi, S.C. 1992Generalized part family formation using neural network techniquesJournal of Manufacturing Systems11149159Google Scholar
  23. Perloff, D.S. 1978A four-point electrical measurement technique for characterizing mask superposition errors on semiconductor wafersIEEE Journal of Solid State Circuits13436444CrossRefGoogle Scholar
  24. Seiffodoni, H., Wolfe, P.M. 1986Application of similarity coefficient method in group technologyIIE Transactions18271277Google Scholar
  25. Srinivasan, G., Narendran, T.T., Mahadevan, B. 1990An assignment model for the part-families problem in group technologyInternational Journal of Production Research28145152Google Scholar
  26. Subhash, S. 1996Applied multivariate techniquesWileyNew YorkGoogle Scholar
  27. Tam, K.Y. 1990An operation sequence based similarity coefficient for part families formationsJournal of Manufacturing Systems95568CrossRefGoogle Scholar
  28. Brink, M.A., DeMol, C.G.M., George, R.A. 1988Matching performance for multiple wafer steppers using an advanced metrology procedureProceedings SPIE: Integrated Circuit Metrology, Inspection, and Process Control II,921180197Google Scholar
  29. Vannelli, A., Kumar, K. 1986A method for finding minimal bottle-neck for grouping part-machine familiesInternational Journal of Production Research24387400Google Scholar
  30. Yule, G.U. 1900On the association of attribute in statistics: with illustration from the material of the childhood societyPhilosophical Transactions of the Royal Society of London Series A194257319Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Engineering ManagementNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations