Journal of Intelligent Information Systems

, Volume 53, Issue 3, pp 563–585 | Cite as

Business information architecture for successful project implementation based on sentiment analysis in the tourist sector

  • Gianpierre Zapata
  • Javier Murga
  • Carlos RaymundoEmail author
  • Francisco Dominguez
  • Javier M. Moguerza
  • Jose Maria Alvarez


In the today’s market, there is a wide range of failed IT projects in specialized small and medium-sized companies because of poor control in the gap between the business and its vision. In other words, acquired goods are not being sold, a scenario which is very common in tourism retail companies. These companies buy a number of travel packages from big companies and due to lack of demand for these packages, they expire, becoming an expense, rather than an investment. To solve this problem, we propose to detect the problems that limit a company by re-engineering the processes, enabling the implementation of a business architecture based on sentimental analysis, allowing small and medium-sized tourism enterprises (SMEs) to make better decisions and analyze the information that most possess, without knowing how to exploit it. In addition, a case study was applied using a real company, comparing data before and after using the proposed model in order to validate feasibility of the applied model.


Data governance Enterprise architecture Business model Process improvement Tourism management 



This work has been partially funded by the following projects of the Spanish Ministry of Science, Innovation and Universities GROMA (MTM2015-63710-P), MODAS-IN (reference: RTI2018-094269-B-I00), PPI (RTC-2015-3580-7) and UNIKO (RTC-2015-3521-7), and the “” research group at URJC.


  1. Alfaro, C., Cano-Montero, J., Gómez, J., Moguerza, J.M., Ortega, F. (2016). A multi-stage method for content classification and opinion mining on weblog comments. Annals of Operations Research, 236(1), 197–213. Scholar
  2. Baucom, E., Sanjari, A., Liu, X., Chen, M. (2013). Mirroring the real world in social media. In Proceedings of the 2013 International Workshop on Mining Unstructured Big Data Using Natural Language Processing - UnstructureNLP ’13. (pp. 61–68). New York: ACM Press.
  3. Brandt, T., Bendler, J., Neumann, D. (2017). Social media analytics and value creation in urban smart tourism ecosystems. Information and Management, 54 (6), 703–713. Scholar
  4. Chauhan, R., & Kaur, H. (2013). Predictive analytics and data mining. Business Intelligence, 359–374.
  5. Dubin, R. (2008). Theory building. Free Press. Retrieved from
  6. Eckerson, W.W. (2006). Predictive Analytics. Extending the Value of Your Data Warehousing Investment.TDWI BEST PRACTICES REPORT. Retrieved from
  7. Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M. (2016). Quantifying controversy in social media. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. 33–42). New York: ACM.
  8. Harris, T. (2010). Cloud Computing Services – A comparison. Retrieved from
  9. Höpken, W., Fuchs, M., Keil, D., Lexhagen, M. (2015). Business intelligence for cross-process knowledge extraction at tourism destinations. Information Technology and Tourism, 15(2), 101–130. Scholar
  10. Huang, L., Luo, Q., Zou, C. (2013). A framework of new rural e-government and the related information resources integration. International Journal of u- and e- Service, Science and Technology, 6(6), 83–96. Scholar
  11. IDC. (2016). Worldwide Semiannual Big Data and Analytics Spending Guide. Retrieved from
  12. Lu, Y., Deng, Z., Wang, B. (2007). Tourism and travel electronic commerce in china. Electrical marketing, 17(2), 101–112. Scholar
  13. Luck, R. (2013). Articulating (mis)understanding across design discipline interfaces at a design team meeting. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 27(02), 155–166. Scholar
  14. Merida, C., Rios, R., Kobayashi, A., Raymundo, C. (2017). Modelo arquitectnico de informacin para una plataforma de Big Data para el Sector Turstico. In Proceedings of the Dcima Sexta Conferencia Iberoamericana en Sistemas, Cibernetica e Informtica (CISCI 2017), Decimo Cuarto Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2017 - Memorias, pp. 321-328.Google Scholar
  15. Polastri, G. (2015). Google Perú: Solo el 15% de pymes peruanas utilizan herramientas digitales en su negocio. Gestión. Retrieved from
  16. Shao, H., Zhang, Y., Li, W. (2017). Extraction and analysis of city’s tourism districts based on social media data. Computers, Environment and Urban Systems, 65, 66–78. Scholar
  17. Sikeridis, D., Papapanagiotou, I., Rimal, B.P., Devetsikiotis, M. (2017). A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors, 1–20. Retrieved from arXiv:1710.01476.
  18. Yan, W. (2014). Research on tourism E-Commerce based on web data mining technology. Applied Mechanics and Materials, 543–547(Iea), 3663–3666. Scholar
  19. Zapata, G., Murga, J., Raymundo, C., Alvarez, J., Dominguez, F. (2017). Predictive model based on sentiment analysis for peruvian SMEs in the sustainable tourist sector. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 232–240). SCITEPRESS - Science and Technology Publications.
  20. Zeng, Z.Y., & Ye, X.Y. (2013). Research on Jiangxi Tourism E-Commerce platform construction. Advanced Materials Research, 734–737, 2990–2993. Scholar
  21. Zhang, X.M., & Xu, C. (2012). A semantic E-Tourism framework based on Cloud-Computing. Applied Mechanics and Materials, 197, 661–668. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ingeniería de Sistemas de InformaciónUniversidad Peruana de Ciencias AplicadasLimaPerú
  2. 2.Ingeniería de SoftwareUniversidad Peruana de Ciencias AplicadasLimaPerú
  3. 3.Escuela Superior de Ingeniería InformáticaUniversidad Rey Juan CarlosMadridEspaña
  4. 4.Department of Computer Science and EngineeringUniversidad Carlos IIIMadridSpain

Personalised recommendations