Advertisement

A knowledge-based multi-criteria collaborative filtering approach for discovering services in mobile cloud computing platforms

The case of MobiCloUP!
  • Luis Omar Colombo-Mendoza
  • Rafael Valencia-García
  • Ricardo Colomo-Palacios
  • Giner Alor-Hernández
Article

Abstract

In the context of Cloud-based development of mobile applications, third-party services to be integrated by applications often have to be manually selected among many categories and providers at design time. Over the years, recommender systems have proven effective in overcoming the challenges related to the incredible growth of the information on the Web. In an effort to better address this problem, the use of Semantic Web technologies in the development of recommender systems has been gaining momentum in recent years. In this paper, we propose a knowledge-based Collaborative Filtering recommendation approach for the discovery of services in a mobile Cloud computing platform for services-based development. Our approach employs a knowledge-based technique that takes advantage of Semantic Web rule-based reasoning capabilities. A major contribution of this work is a multi-criteria collaborative service evaluation mechanism that is based on a standard service quality framework and is built on top of an ontology-based domain model. A two-part evaluation method that is intended to evaluate the proposed recommendation approach not only from a Computer Science perspective but also from an Information Systems perspective is also presented.

Keywords

Recommender system Multi-criteria rating Collaborative filtering Semantic web Knowledge base Mobile cloud computing 

References

  1. Adomavicius, G., Manouselis, N., Kwon, Y. (2011). Multi-criteria recommender systems. In Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Eds.) Recommender systems handbook (pp. 769–803). USA: Springer.Google Scholar
  2. Berners-Lee, T., Hendler, J., Lassila, O. (2001). The semantic Web. Scientific American, 284, 34–43.CrossRefGoogle Scholar
  3. Blanco-Fernández, Y., López-Nores, M., Pazos-Arias, J.J., García-Duque, J. (2011). An improvement for semantics-based recommender systems grounded on attaching temporal information to ontologies and user profiles. Engineering Applications of Artificial Intelligence, 24(8), 1385–1397.CrossRefGoogle Scholar
  4. Cantador, I., Fernández, M., Castells, P. (2006). A collaborative recommendation framework for ontology evaluation and reuse. In Proc. of the international ECAI workshop on recommender systems, Riva del Garda, Italy.Google Scholar
  5. Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia-García, R., García-Sánchez, F. (2012). Social knowledge-based recommender system. Application to the movies domain. Expert Systems with Applications, 39(12), 10,990–11,000.CrossRefGoogle Scholar
  6. Chakhar, S., Haddad, S., Mokdad, L., Mousseau, V., Youcef, S. (2015). Multicriteria evaluation-based framework for composite web service selection. In Bisdorff, R., Dias, L.C., Meyer, P., Mousseau, V., Pirlot, M. (Eds.) Evaluation and decision models with multiple criteria, international handbooks on information systems (pp. 167–200). Berlin: Springer.Google Scholar
  7. Colombo-Mendoza, L.O., Alor-Hernández, G., Rodríguez-gonzález, A., Valencia-garcía, R. (2014). MobiCloUP!: a PaaS for cloud services-based mobile applications. Automated Software Engineering, 21(3), 391–437.CrossRefGoogle Scholar
  8. Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233–240). New York, ACM, ICML ’06.Google Scholar
  9. Dooms, S., De Pessemier, T., Martens, L. (2011). A user-centric evaluation of recommender algorithms for an event recommendation system. In Proceedings of the RecSys 2011 : workshop on user-centric evaluation of recommender systems and their interfaces - 2 (UCERSTI 2) (pp. 67–73). Chicago: Ghent University, Department of Information technology.Google Scholar
  10. Fernando, N., Loke, S.W., Rahayu, W. (2013). Mobile cloud computing: a survey. Future Generation Computer Systems, 29(1), 84–106.CrossRefGoogle Scholar
  11. International Organization for Standarization. (2011). Systems and software Quality Requirements and Evaluation (SQuaRE). Tech. Rep. ISO/IEC 25010:2011, International Organization for Standarization.Google Scholar
  12. Gui, Z., Yang, C., Xia, J., Huang, Q., Liu, K., Li, Z., Yu, M., Sun, M., Zhou, N., Jin, B. (2014). A service brokering and recommendation mechanism for better selecting cloud services. PLOS ONE, 9(8), e105,297.CrossRefGoogle Scholar
  13. Halvey, M., Vallet, D., Hannah, D., Jose, J.M. (2014). Supporting exploratory video retrieval tasks with grouping and recommendation. Information Processing & Management, 50(6), 876–898.CrossRefGoogle Scholar
  14. Ichii, M., Hayase, Y., Yokomori, R., Yamamoto, T., Inoue, K. (2009). Software component recommendation using collaborative filtering. In ICSE workshop on search-driven development-users, infrastructure, tools and evaluation, (Vol. 0 pp. 17–20). Los Alamitos: IEEE Computer Society.Google Scholar
  15. Jannach, D., Zanker, M., Ge, M., Gröning, M. (2012). Recommender systems in computer science and information systems – a landscape of research. In Huemer, C., & Lops, P. (Eds.) E-Commerce and Web technologies, no. 123 in lecture notes in business information processing (pp. 76–87). Berlin: Springer.Google Scholar
  16. Jiang, Y., Liu, J., Tang, M., Liu, X. (2011). An effective Web service recommendation method based on personalized collaborative filtering. In 2011 IEEE international conference on Web services (ICWS) (pp. 211–218).Google Scholar
  17. Jung, G., Mukherjee, T., Kunde, S., Kim, H., Sharma, N., Goetz, F. (2013). CloudAdvisor: a recommendation-as-a-service platform for cloud configuration and pricing. In 2013 IEEE Ninth world congress on services (SERVICES) (pp. 456–463).Google Scholar
  18. Kalaï, A, Zayani, C.A., Amous, I., Abdelghani W., Sèdes, F. (2017). Social collaborative service recommendation approach based on user’s trust and domain-specific expertise. Future Generation Computer Systems.Google Scholar
  19. Kang, J., & Sim, KM. (2011). Towards agents and ontology for cloud service discovery. In 2011 International conference on cyber-enabled distributed computing and knowledge discovery (CyberC) (pp. 483–490).Google Scholar
  20. Lee, W.P., Kaoli, C., Huang, J.Y. (2014). A smart TV system with body-gesture control, tag-based rating and context-aware recommendation. Knowledge-Based Systems, 56, 167–178.CrossRefGoogle Scholar
  21. Li, Q., Myaeng, S.H., Kim, B.M. (2007). A probabilistic music recommender considering user opinions and audio features. Information Processing & Management, 43 (2), 473–487.CrossRefGoogle Scholar
  22. Lo, N.W., & Wang, C.H. (2007). Web services QoS evaluation and service selection framework - a proxy-oriented approach. In TENCON 2007 - 2007 IEEE region 10 conference (pp. 1–5).Google Scholar
  23. Mao, J., Lu, K., Li, G., Yi, M. (2016). Profiling users with tag networks in diffusion-based personalized recommendation. Journal of Information Science, 42(5), 711–722.CrossRefGoogle Scholar
  24. Movahedian, H., & Khayyambashi, M.R. (2014). Folksonomy-based user interest and disinterest profiling for improved recommendations: an ontological approach. Journal of Information Science, 40(5), 594–610.CrossRefGoogle Scholar
  25. Murphy-Hill, E., Jiresal, R., Murphy, G.C. (2012). Improving software developers’ fluency by recommending development environment commands. In Proceedings of the ACM SIGSOFT 20th international symposium on the foundations of software engineering (pp 42:1–42:11). New York, ACM, FSE ’12.Google Scholar
  26. Pessemier, T.D., Courtois, C., Vanhecke, K., Damme, K.V., Martens, L., Marez, L.D. (2015). A user-centric evaluation of context-aware recommendations for a mobile news service. Multimedia Tools and Applications, pp. 1–29.Google Scholar
  27. Pu, P., Chen, L., Hu, R. (2011). A user-centric evaluation framework for recommender systems. In Proceedings of the Fifth ACM conference on recommender systems (pp. 157–164). New York: ACM.Google Scholar
  28. Ricci, F., Rokach, L., Shapira, B. (2011). Introduction to recommender systems handbook. In Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Eds.) Recommender systems handbook (pp. 1–35). USA: Springer.Google Scholar
  29. Salton, G., & McGill, M.J. (1986). Introduction to modern information retrieval. New York: McGraw-Hill, Inc.zbMATHGoogle Scholar
  30. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Eds.) Recommender systems handbook (pp. 257–297). USA: Springer.Google Scholar
  31. Singhal, A. (2001). Modern information retrieval: a brief overview. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 24(4), 35–42.Google Scholar
  32. Wu, C., Kao, S.C., Wu, C.C., Huang, S. (2015). Location-aware service applied to mobile short message advertising: design, development, and evaluation. Information Processing & Management, 51(5), 625–642.CrossRefGoogle Scholar
  33. Xiao, H., Zou, Y., Tang, R., Ng, J., Nigul, L. (2011). Ontology-driven service composition for end-users. Serv Oriented Comput Appl, 5(3), 159–181.CrossRefGoogle Scholar
  34. Xu, S.Y., & Raahemi, B. (2016). A semantic-based service discovery framework for collaborative environments. International Journal of Simulation Modelling, 15(1), 83–96.CrossRefGoogle Scholar
  35. Xu, Y., Yin, J., Deng, S., N Xiong, N., Huang, J. (2016). Context-aware QoS prediction for web service recommendation and selection. Expert Systems with Applications, 53, 75–86.CrossRefGoogle Scholar
  36. Yang, W.S., Cheng, H.C., Dia, J.B. (2008). A location-aware recommender system for mobile shopping environments. Expert Systems with Applications, 34(1), 437–445.CrossRefGoogle Scholar
  37. Yao, H., Etzkorn, L.H., Virani, S. (2008). Automated classification and retrieval of reusable software components. Journal of the American Society for Information Science and Technology, 59(4), 613–627.CrossRefGoogle Scholar
  38. Zhang, H., Shao, Z., Zheng, H., Zhai, J. (2014). Web service reputation evaluation based on QoS measurement. The Scientific World Journal, 2014, 1–7.Google Scholar
  39. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A. (2012). A declarative recommender system for cloud infrastructure services selection. In Vanmechelen, K., Altmann, J., Rana, O.F. (Eds.) Economics of grids, clouds, systems, and services, no. 7714 in lecture notes in computer science (pp. 102–113). Berlin: Springer.Google Scholar
  40. Zheng, Z., Ma, H., Lyu, M.R., King, I. (2011). QoS-Aware Web service recommendation by collaborative filtering. IEEE Transactions on Services Computing, 4(2), 140–152.CrossRefGoogle Scholar
  41. Zoghbi, S., Vulić, I, Moens, M.F. (2016). Latent Dirichlet allocation for linking user-generated content and e-commerce data. Information Sciences, 367(Supplement C), 573–599.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de InformáticaUniversidad de Murcia, Campus de EspinardoMurciaSpain
  2. 2.División de Estudios de Posgrado e Investigación, Instituto Tecnológico de OrizabaOrizabaMéxico

Personalised recommendations