Journal of Intelligent Information Systems

, Volume 50, Issue 3, pp 573–595 | Cite as

A proposal of a temporal semantics aware linked data information retrieval framework

  • Md-Mizanur Rahoman
  • Ryutaro Ichise


Temporal features, such as an explicit date and time or a time-specific event, employ concise semantics for any kind of information retrieval. Therefore, temporal features should be suitable for linked data information retrieval. However, we have found that most linked data information retrieval techniques pay little attention to the power of temporal feature inclusion. We propose a keyword-based linked data information retrieval framework ‘ that can incorporate temporal features and give more concise results. The evaluation of our system performance indicates that it is promising.


Temporal information retrieval Temporal feature Event and time 


  1. Aggarwal, N., & Buitelaar, P. (2012). A system description of natural language query over DBpedia. In Proceedings of interacting with linked data (pp. 96–99).Google Scholar
  2. Alonso, O., Gertz, M., & Baeza-Yates, R. (2009). Clustering and exploring search results using timeline constructions. In Proceedings of the 18th ACM conference on information and knowledge management (pp. 97–106).Google Scholar
  3. Ardalan, Z., Martín, C., & Padró, L. (2015). AETAS: a system for semanticizing temporal expressions from unstructured contents. In Proceedings of the advances in spatial and temporal databases - 14th international symposium (pp 478–483).Google Scholar
  4. Bereta, K., Smeros, P., & Koubarakis, M. (2013). Representation and querying of valid time of triples in linked geospatial data. In Proceedings of the 10th European semantic web conference (pp. 259– 274).Google Scholar
  5. Berners-Lee, T. (2006). Linked data - design issues.
  6. Chang, A.X., & Manning, C. (2012). SUTime: a library for recognizing and normalizing time expressions. In Proceedings of the 8th international conference on language resources and evaluation, european language resources association (pp. 23–25).Google Scholar
  7. Correndo, G., Salvadores, M., Millard, I., & Shadbolt, N. (2010). Linked timelines: temporal representation and management in linked data. In Proceedings of the first international workshop on consuming linked data. Shanghai.Google Scholar
  8. Derczynski, L., & Gaizauskas, R.J. (2012). A corpus-based study of temporal signals. Computing Research Repository. arXiv:abs/1203.5066.
  9. Cabrio, E., Cojan, J., Magnini, B., Gandon, F., Palmero Aprosio, A., & Lavelli, A. (2012). Qakis qald-2. In Proceedings of interacting with linked data (ILD 2012) (pp. 87-95).Google Scholar
  10. Fry, E.B., Kress, J.E., & Fountoukidis, D.L. (1993). The reading teacher’s book of lists. Englewood Cliffs: Prentice Hall.Google Scholar
  11. Gutierrez, C., Hurtado, C., & Vaisman, R. (2005). Temporal rdf. In Proceedings of the 2nd european semantic web conference (pp. 93–107).Google Scholar
  12. Hafner, C.D. (1985). Semantics of temporal queries and temporal data. In Proceedings of the 23rd annual meeting on association for computational linguistics, ACL ’85. doi: 10.3115/981210.981211 (pp. 1–8). Stroudsburg: Association for Computational Linguistics.Google Scholar
  13. Khrouf, H., Milicic, V., & Troncy, R. (2012). EventMedia live: exploring events connections in real-time to enhance content. In Proceedings of the semantic web challenge at the 11th international conference on the semantic web. Boston.Google Scholar
  14. Kucera, H., & Trnka, K. (1975). TTime in language: temporal adverbial constructions in Czech, Russian and English. Michigan Slavic Publications.Google Scholar
  15. Mani, I., & Wilson, D.G. (2000). Robust temporal processing of news. In Proceedings of the 38th annual meeting on association for computational linguistics association for computational linguistics (pp. 69–76).Google Scholar
  16. Matthias Wendt, M.G., & D̈wiger, H. (2012). Linguistic modeling of linked open data for question answering. In Proceedings of interacting with linked data (ILD 2012) (pp. 75–86).Google Scholar
  17. Rahoman, M.M., & Ichise, R. (2012). An automated template selection framework for keyword query over linked data. In Proceedings of the 2nd joint international semantic technology conference (pp. 175– 190).Google Scholar
  18. Rahoman, M.M., & Ichise, R. (2013). Tldret: a temporal semantic facilitated linked data retrieval framework. In Proceedings of the 3rd joint international semantic technology conference (pp. 228–243).Google Scholar
  19. Rahoman, M.M., & Ichise, R. (2014). Automatic inclusion of semantics over keyword-based linked data retrieval. IEICE Transactions on Information and Systems, E97-D(11), 2852–2862.CrossRefGoogle Scholar
  20. Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., & Maurino, A. (2012). On the diversity and availability of temporal information in linked open data. In Proceedings of the 11th international conference on the semantic web (pp. 492–507).Google Scholar
  21. Rula, A., Palmonari, M., Ngomo, A.N., Gerber, D., Lehmann, J., & Bühmann, L. (2014). Hybrid acquisition of temporal scopes for RDF data. In The semantic web: trends and challenges - 11th international conference (pp. 488–503).Google Scholar
  22. Saquete, E., González, J.L.V., Martínez-Barco, P., Muñoz, R., & Llorens, H. (2009). Enhancing QA systems with complex temporal question processing capabilities. Journal of Artificial Intelligence Research, 35, 775–811.zbMATHGoogle Scholar
  23. Saurí, R., Knippen, R., Verhagen, M., & Pustejovsky, J. (2005). Evita: a robust event recognizer for qa systems. In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 700–707). Association for Computational Linguistics.Google Scholar
  24. Schilder, F., & Habel, C. (2003). Temporal information extraction for temporal question answering. In Maybury, M T (Ed.) New directions in question answering, papers from the 2003 AAAI spring symposium TR SS-03-07 (pp. 35–44): AAAI Press.Google Scholar
  25. Shekarpour, S., Auer, S., Ngomo, A.C.N., Gerber, D., Hellmann, S., & Stadler, C. (2011). Keyword-driven SPARQL query generation leveraging background knowledge. In Proceedings of the 10th international conference on web intelligence (pp. 203–210). IEEE Computer Society.Google Scholar
  26. Tappolet, J., & Bernstein, A. (2009). Applied temporal rdf: efficient temporal querying of rdf data with sparql. In Proceedings of the 6th european semantic web conference (pp. 308–322).Google Scholar
  27. Troncy, R., Malocha, B., & Fialho, A.T.S. (2010). Linking events with media. In Proceedings of the 6th international conference on semantic systems (pp. 1–4).Google Scholar
  28. UzZaman, N., & Allen, J.F. (2010). Event and temporal expression extraction from raw text: first step towards a temporally aware system. International Journal of Semantic Computing, 4(4), 487– 508.CrossRefGoogle Scholar
  29. UzZaman, N., Llorens, H., & Allen, J.F. (2012). Evaluating temporal information understanding with temporal question answering. In Proceedings of the sixth IEEE international conference on semantic computing, ICSC 2012 (pp. 79-82).Google Scholar
  30. Vandenbussche, P.Y., & Teissédre, C. (2011). Events retrieval using enhanced semantic web knowledge. In Proceedings of the workshop on detection, representation, and exploitation of events in the semantic web (pp. 112–116).Google Scholar
  31. Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., & Pan, Y. (2009). Semplore: a scalable IR approach to search the web of data. Journal of Web Semantics, 7(3), 177–188.CrossRefGoogle Scholar
  32. Wang, Y., Zhu, M., Qu, L., Spaniol, M., & Weikum, G. (2010). Timely yago: harvesting, querying, and visualizing temporal knowledge from wikipedia. In Proceedings of the 13th international conference on extending database technology (pp. 697–700).Google Scholar
  33. Zenz, G., Zhou, X., Minack, E., Siberski, W., & Nejdl, W. (2009). From keywords to semantic queries-incremental query construction on the semantic web. Journal of Web Semantics, 7(3), 166–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of InformaticsSOKENDAITokyoJapan
  2. 2.Department of Computer Science & EngineeringBegum Rokeya UniversityRangpurBangladesh
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations