Journal of Intelligent Information Systems

, Volume 48, Issue 3, pp 579–599 | Cite as

Genre classification of symbolic pieces of music

  • Marcelo G. Armentano
  • Walter A. De Noni
  • Hernán F. Cardoso
Article

Abstract

Automatic classification of music is a complex and interesting research problem due to the difficulties that arise when determining the musical features that should be considered for classification and the characteristics that define each particular genre. In this article, we propose an approach for automatic genre classification of symbolic music pieces. We evaluated our approach with a dataset consisting of 225 pieces using a taxonomy of three genres and nine subgenres. Results demonstrate that by only extracting a small set of features from the MIDI files, we are able to obtain better results than competing approaches that use one hundred features for classification.

Keywords

Music genre classification Symbolic music classification MIDI 

References

  1. Abeßer, J., Lukashevich, H., & Bräuer, P. (2012). Classification of music genres based on repetitive basslines. Journal of New Music Research, 41(3), 239–257.CrossRefGoogle Scholar
  2. Aucouturier, J.-J., & Pachet, F. (2003). Representing musical genre: A state of the art. Journal of New Music Research, 32(1), 83–93.CrossRefGoogle Scholar
  3. Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., & Klapuri, A. (2013). Automatic music transcription: Challenges and future directions. Journal of Intelligent Information Systems, 41(3), 407–434. doi:10.1007/s10844-013-0258-3. ISSN 1573-7675.CrossRefGoogle Scholar
  4. Chai, W., & Vercoe, B. (2001). Folk music classification using hidden markov models. In Proceedings of international conference on artificial intelligence.Google Scholar
  5. Chen, G.-F., & Sheu, J.-S. (2014). An optical music recognition system for traditional chinese kunqu opera scores written in gong-che notation. EURASIP Journal on Audio, Speech, and Music Processing, 7, 1–12.Google Scholar
  6. Dannenberg, R.B., Thom, B., & Watson, D. (1997). A machine learning approach to musical style recognition. In Proceedings of the international computer music conference (pp. 344–347).Google Scholar
  7. Downie, J.S. (2003). Music information retrieval. In: Annual review of information science and technology (pp. 37: –).Google Scholar
  8. Fabbri, F. (1999). Browsing music spaces: Categories and the musical mind. In Proceedings of the IASPM-US conference (International Association for the Study of Popular Music).Google Scholar
  9. Gjerdingen, R.O., & Perrott, D. (2008). Scanning the dial: The rapid recognition of music genres. Journal of New Music Research, 37(2), 93–100.CrossRefGoogle Scholar
  10. de Jesus Guerrero-Turrubiates, J., Gonzalez-Reyna, S.E., Ledesma-Orozco, S.E., & Avina-Cervantes, J.G. (2014). Pitch estimation for musical note recognition using artificial neural networks. In Proceedings of the 24th international conference on electronics, communications and computers (pp. 53– 58).Google Scholar
  11. Kotsifakos, A., Kotsifakos, E.E., Papapetrou, P, & Athitsos, V (2013). Classification of symbolic music with smbgt. In Proceedings of the 6th international conference on PErvasive technologies related to assistive environments.Google Scholar
  12. Lippens, S., Martens, J.P, De Mulder, T., & Tzanetakis, G. (2004). A comparison of human and automatic musical genre classification. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (vol. 4).Google Scholar
  13. McKay, C (2004). Automatic genre classification of midi recordings. Master’s thesis, McGill University, Canada.Google Scholar
  14. Ponce de León, P.J., & Iñesta, J.M. (2002). Musical style identification using self-organising maps. In: Proceedings of the second international conference on web delivering of music (pp. 82–89).Google Scholar
  15. Schedl, M., Gómez, E., & Urbano, J. (2014a). Music information retrieval: Recent developments and applications. Foundations and Trends in Information Retrieval, 8(2–3), 127–261.CrossRefGoogle Scholar
  16. Schedl, M., Hauger, D., & Urbano, J. (2014b). Harvesting microblogs for contextual music similarity estimation: a co-occurrence-based framework. Multimedia Systems, 20(6), 693–705.CrossRefGoogle Scholar
  17. Seyerlehner, K (2010). Content-Based Music Recommender Systems: Beyond simple Frame-Level Audio Similarity. PhD thesis, Johannes Kepler University Linz, Linz, Austria.Google Scholar
  18. Shan, M.-K., Kuo, F.-F., & Chen, M.-F. (2002). Music style mining and classification by melody. In Proceedings of 2002 IEEE international conference on multimedia and expo(pp. 97-100).Google Scholar
  19. Li, S., & Yang, Y.-H. (2015). Combining spectral and temporal representations for multipitch estimation of polyphonic music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(10), 1600–1612.CrossRefGoogle Scholar
  20. Tagg, P. (1982). Analysing popular music: theory, method and practice. Popular Music, 2, 37–67.CrossRefGoogle Scholar
  21. Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293–302.CrossRefGoogle Scholar
  22. Valverde-Rebaza, J., Soriano, A., Berton, L.n., Oliveira, M.C.F., & de Andrade Lopes, A. (2014). Music genre classification using traditional and relational approaches. In Proceedings of the Brazilian conference on intelligent systems.Google Scholar
  23. Wen, C., Rebelob, A., Zhang, J., & Cardosob, J. (2015). A new optical music recognition system based on combined neural network. Pattern Recognition Letters, 58, 1–7.CrossRefGoogle Scholar
  24. Wieczorkowska, A.A., & Ras, Z.W. (2003). Editorial—music information retrieval. Journal of Intelligent Information Systems, 21(1), 5–8. doi:10.1023/A:1023543016136. ISSN 1573-7675.CrossRefGoogle Scholar
  25. Wojcik, J., & Kostek, B. (2010). Representations of music in ranking rhythmic hypotheses, chapter 3, (pp. 39–64). Berlin Heidelberg: Springer. ISBN 978-3-642-11674-2.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ISISTAN Research Institute (CONICET / UNICEN)TandilArgentina
  2. 2.Facultad de Ciencias ExactasUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina

Personalised recommendations