Journal of Intelligent Information Systems

, Volume 48, Issue 1, pp 75–115 | Cite as

Skeleton clustering by multi-robot monitoring for fall risk discovery

  • Yutaka Deguchi
  • Daisuke Takayama
  • Shigeru Takano
  • Vasile-Marian Scuturici
  • Jean-Marc Petit
  • Einoshin Suzuki


This paper tackles the problem of discovering subtle fall risks using skeleton clustering by multi-robot monitoring. We aim to identify whether a gait has fall risks and obtain useful information in inspecting fall risks. We employ clustering of walking postures and propose a similarity of two datasets with respect to the clusters. When a gait has fall risks, the similarity between the gait which is being observed and a normal gait which was monitored in advance exhibits a low value. In subtle fall risk discovery, unsafe skeletons, postures in which fall risks appear slightly as instabilities, are similar to safe skeletons and this fact causes the difficulty in clustering. To circumvent this difficulty, we propose two instability features, the horizontal deviation of the upper and lower bodies and the curvature of the back, which are sensitive to instabilities and a data preprocessing method which increases the ability to discriminate safe and unsafe skeletons. To evaluate our method, we prepare seven kinds of gait datasets of four persons. To identify whether a gait has fall risks, the first and second experiments use normal gait datasets of the same person and another person, respectively. The third experiments consider that how many skeletons are necessary to identify whether a gait has fall risks and then we inspect the obtained clusters. In clustering more than 500 skeletons, the combination of the proposed features and our preprocessing method discriminates gaits with fall risks and without fall risks and gathers unsafe skeletons into a few clusters.


Skeleton clustering Human monitoring Mobile robots Service-oriented DSMS 



A part of this research was supported by a Bilateral Joint Research Project between Japan and France funded from Japan Society for the Promotion of Science (JSPS) and Centre National de la Recherche Scientifique (CNRS/JSPS PRC 0672), and JSPS KAKENHI 24650070 and 25280085.


  1. Ardiyanto, I., & Miura, J. (2014). Cameraman robot: Dynamic trajectory tracking with final time constraint using state-time space stochastic approach. In Intelligent Robots and Systems (IROS 2014). IEEE/RSJ International Conference on IEEE (pp. 3108–3115).Google Scholar
  2. Bayer, R., & McCreight, E.M. (1972). Organization and maintenance of large ordered indices. Acta Informatica, 1, 173–189. doi: 10.1007/BF00288683.CrossRefMATHGoogle Scholar
  3. Bhattacharyya, A. (1946). On a measure of divergence between two multinomial populations. Sankhyā: The Indian Journal of Statistics, 401–406.Google Scholar
  4. Clauser, C.E., McConville, J.T., & Young, J.W. (1969). Weight, volume, and center of mass of segments of the human body. USA: Ohio.Google Scholar
  5. Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L., Gonzalez, J., Karlsson, L., Furfari, F., Loutfi, A., Orlandini, A., Palumbo, F., Pecora, F., von Rump, S., S̆timec, A., Ullberg, J., & Östlund, B. (2013). GiraffPlus: combining social interaction and long term monitoring for promoting independent living. In Human System Interaction (HSI).Google Scholar
  6. Deguchi, Y. (2014). Construction of a human monitoring system based on incremental discovery by multiple mobile robots. Master thesis, Graduate School of ISEE, Kyushu University (in Japanese).Google Scholar
  7. Deguchi, Y., & Suzuki, E. (2014). Skeleton clustering by autonomous mobile robots for subtle fall risk discovery. In ISMIS 2014. LNCS. doi: 10.1007/978-3-319-08326-1_51, (Vol. 8502 pp. 500–505).
  8. Deguchi, Y., Takayama, D., Takano, S., Scuturici, V.M., Petit, J.M., & Suzuki, E (2014). Multiple-robot monitoring system based on a service-oriented DBMS. In Seventh ACM International Conference on Pervasive Technologies Related to Assistive Environments (PETRA).Google Scholar
  9. Diraco, G., Leone, A., & Siciliano, P. (2010). An active vision system for fall detection and posture recognition in elderly healthcare. In Design, Automation and Test in Europe (pp. 1536–1541).Google Scholar
  10. Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: significant advancements and applications. IEEE Robotics & Automation Magazine, 19 (1), 24–39. doi: 10.1109/MRA.2011.2181683.CrossRefGoogle Scholar
  11. Fischinger, D., Einramhof, P., Wohlkinger, W., Papoutsakis, K., Mayer, P., Panek, P., Koertner, T., Hofmann, S., Argyros, A., Vincze, M., Weiss, A., & Gisinger C. (2013). Hobbit - the mutual care robot. In ASROB-2013 in conjunction with IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), in conjunction with IROS.Google Scholar
  12. Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Computer and System Sciences, 55(1), 119–139. doi: 10.1006/jcss.1997.1504.MathSciNetCrossRefMATHGoogle Scholar
  13. Gjoreski, H., Lustrek, M., & Gams, M. (2012). Context-based fall detection using inertial and location sensors. In Ambient Intelligence - Third International Joint Conference, AmI 2012, pp.1–16. doi: 10.1007/978-3-642-34898-3_1.
  14. Gripay, Y., Laforest, F., & Petit, J.M. (2010). A simple (yet powerful) algebra for pervasive environments. In EDBT 2010, 13th International Conference on Extending Database Technology. doi: 10.1145/1739041.1739086 (pp. 359–370).
  15. Kondo, R., Deguchi, Y., & Suzuki, E. (2014). Developing a face monitoring robot for a desk worker. In AmI 2014. LNCS, vol. 8850 (pp. 226–241): Springer.Google Scholar
  16. Koshmak, G.A., Linden, M., & Loutfi, A. (2013). Evaluation of the android-based fall detection system with physiological data monitoring. In The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13), IEEE (pp. 1164–1168).Google Scholar
  17. Leibrandt, K., Marcus, H.J., Kwok, K.W., & Yang, G.Z. (2014). Implicit active constraints for a compliant surgical manipulator. In 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7. doi: 10.1109/ICRA.2014.6906622 (pp. 276–283).
  18. Martinson, E., & Yalla, V. (2014). Guiding computational perception through a shared auditory space. In Intelligent Robots and Systems (IROS 2014). IEEE/RSJ International Conference on IEEE (pp. 3156–3161).Google Scholar
  19. Neumann, P.P., Asadi, S., Lilienthal, A.J., Bartholmai, M., & Schiller, J.H. (2012). Autonomous gas-sensitive microdrone: wind vector estimation and gas distribution mapping. IEEE Robotics & Automation Magazine, 19(1), 50–61. doi: 10.1109/MRA.2012.2184671.CrossRefGoogle Scholar
  20. Pal, M., Saha, S., & Konar, A. (2014). A fuzzy c means clustering approach for gesture recognition in healthcare. Enhanced Research in Science Technology & Engineering, 3, 87–94.Google Scholar
  21. Palunko, I., Cruz, P., & Fierro, R. (2012). Agile load transportation : safe and efficient load manipulation with aerial robots. IEEE Robotics & Automation Magazine, 19(3), 69–79. doi: 10.1109/MRA.2012.2205617.CrossRefGoogle Scholar
  22. Pippin, C., & Christensen, H.I. (2014). Trust modeling in multi-robot patrolling. In 2014 IEEE International Conference on Robotics and Automation, ICRA. doi: 10.1109/ICRA.2014.6906590 (pp. 59–66).
  23. Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., & Meunier, J. (2011). Fall detection from depth map video sequences. In Toward Useful Services for Elderly and People with Disabilities - 9th International Conference on Smart Homes and Health Telematics, ICOST, 2011, pp. 121–128. doi: 10.1007/978-3-642-21535-3_16.
  24. Rubenstein, L.Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age and Ageing, 35((Suppl 2)), ii37–ii41.Google Scholar
  25. Scuturici, V.M., Surdu, S., Gripay, Y., & Petit, J.M. (2012). In ACM (Ed.) 13th International Middleware Conference (Middleware’12), ACM. doi: 10.1145/2405153.2405164 (pp. 11:1–11:2).
  26. Sixsmith, A., & Johnson, N. (2004). A smart sensor to detect the falls of the elderly. IEEE Pervasive Computing, 3(2), 42–47. doi: 10.1109/MPRV.2004.1316817.CrossRefGoogle Scholar
  27. Suzuki, E., Matsumoto, E., & Kouno, A. (2012). Data squashing for HSV subimages by an autonomous mobile robot. In Discovery Science (DS 2012), LNAI 7569 (pp. 95–109): Springer.Google Scholar
  28. Suzuki, E., Deguchi, Y., Takayama, D., Takano, S., Scuturici, V.M., & Petit J.M. (2014). Towards facilitating the development of a monitoring system with autonomous mobile robots. In Information Search Integration and Personalization (pp. 57–70): Springer.Google Scholar
  29. Takayama, D., Deguchi, Y., Takano, S., Scuturici, V.M., Petit, J.M., & Suzuki, E. (2014). Multi-view onboard clustering of skeleton data for fall risk discovery. In AmI 2014. LNCS, vol. 8850 (pp. 258–273): Springer.Google Scholar
  30. Tinetti, M.E., Williams, T.F., & Mayewski, R. (1986). Fall risk index for elderly patients based on number of chronic disabilities. The American Journal of Medicine, 80(3), 429–434.CrossRefGoogle Scholar
  31. United Nations (2013). Department of Economic and Social Affairs, Population Devision World population ageing 2013. Tech. rep., ST/ESA/SER.A/348.Google Scholar
  32. Wang, Z. (2010). Comparison of four kinds of fuzzy c-means clustering methods. In Information Processing (ISIP) 2010. Third International Symposium on IEEE, pp. 563–566.Google Scholar
  33. Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: a new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2), 141–182. doi: 10.1023/A:1009783824328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yutaka Deguchi
    • 1
  • Daisuke Takayama
    • 1
  • Shigeru Takano
    • 1
  • Vasile-Marian Scuturici
    • 2
  • Jean-Marc Petit
    • 2
  • Einoshin Suzuki
    • 1
  1. 1.ISEEKyushu UniversityFukuokaJapan
  2. 2.INSA-LyonCNRS, Université de LyonVilleurbanneFrance

Personalised recommendations