Journal of Intelligent Information Systems

, Volume 45, Issue 2, pp 131–164 | Cite as

An end to end framework for building data cubes over trajectory data streams

  • Elio MasciariEmail author


In this paper we propose an end to end framework that allows efficient analysis for trajectory streams. In particular, our approach consists of several steps. First, we perform a partitioning strategy for incoming streams of trajectories in order to reduce the trajectory size and represent trajectories using a suitable data structure. After the encoding step we build specialized cuboids for trajectories in order to make the querying step quite effective. This problem revealed really challenging as we deal with data (trajectories) for which the order of elements is relevant thus making the analysis quite harder than for classical transactional data. We performed several tests on real world datasets that confirmed the efficiency and effectiveness of the proposed techniques.


Trajectory data warehousing Spatial joins Trajectoty cuboids 


  1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S. (1998). Scalable sweeping-based spatial join. In VLDB (pp. 570–581).Google Scholar
  2. Bakalov, P., Hadjieleftheriou, M., Tsotras, V. J. (2005). Time relaxed spatiotemporal trajectory joins. In ACM GIS (pp. 182–191).Google Scholar
  3. Bédard, Y., Merrett, T., Han, J. (2001). Fundamentals of spatial data warehousing for geographic knowledge discovery. In GDMKD (pp. 53–73).Google Scholar
  4. Cao, H., Wolfson, O., Trajcevski, G. (2006). Spatio-temporal data reduction with deterministic error bounds. The VLDB Journal, 15 (3), 211–228.CrossRefGoogle Scholar
  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD (pp. 226–231).Google Scholar
  6. Frentzos, E., Gratsias, K., Theodoridis, Y. (2007). Index-based most similar trajectory search. In Proceedings of the ICDE conference (pp. 816–825).Google Scholar
  7. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D. (2007). Trajectory pattern mining. In KDD (pp. 330–339).Google Scholar
  8. Gonzalez, H., Han, J., Li, X., Klabjan, D. (2006). Warehousing and analyzing massive rfid data sets. In ICDE (p. 83).Google Scholar
  9. Gorawski, M., & Gorawski, M. (2007). Modified r-mvb tree and btv algorithm used in a distributed spatio-temporal data warehouse. In PPAM (pp. 199–208).Google Scholar
  10. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T. (2009). Compressing spatio-temporal trajectories. Computational Geometry - Theory and Applications, 42(9), 825–841.zbMATHMathSciNetCrossRefGoogle Scholar
  11. Han, J., Stefanovic, N., Koperski, K. (1998). Selective materialization: an efficient method for spatial data cube construction. In PAKDD.Google Scholar
  12. Jensen, C.S., Kligys, A., Pedersen, T.B., Dyreson, C.E., Timko, I. (2004). Multidimensional data modeling for location-based services. In The VLDB Journal 13.Google Scholar
  13. Jeung, H., Yiu, M., Zhou, X., Jensen, C.S., Shen, H.T. (2008). Discovery of convoys in trajectory databases. PVLDB, 1(1), 1068–1080.Google Scholar
  14. Jolliffe, I.T. (2002). Principal component analysis. Springer Series in Statistics.Google Scholar
  15. Lee, C., & Chung, C. (2008). Efficient storage scheme and query processing for supply chain management using rfid. In SIGMOD (pp. 291–302).Google Scholar
  16. Lee, M.-L., Wu, X., Hsu, W. (2004). A prime number labeling scheme for dynamic ordered xml trees. In ICDE.Google Scholar
  17. Lee, J., Han, J., Whang, K. (2007). Trajectory clustering: a partition-and-group framework. In SIGMOD (pp. 593–604).Google Scholar
  18. Lee, J., Han, J., Li, X., Gonzalez, H. (2008a). TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. PVLDB, 1(1), 1081–1094.Google Scholar
  19. Lee, J., Han, J., Li, X. (2008b). Trajectory outlier detection: a partition-and-detect framework. In ICDE - international conference on data engineering (pp. 140–149).Google Scholar
  20. Leonardi, L., Marketos, G., Frentzos, E., Giatrakos, N., Orlando, S., Pelekis, N., Raffaetà, A., Roncato, A., Silvestri, C., Theodoridis, Y. (2010). T-warehouse: visual olap analysis on trajectory data. In ICDE (pp. 1141–1144).Google Scholar
  21. Li, Y., Han, J., Yang, J. (2004). Clustering moving objects. In KDD (pp. 617–622).Google Scholar
  22. Madey, G. R., Szabo, G., Barabasi, A. (2006). Wiper: the integrated wireless phone based emergency response system. In International conference on computational science (3) (pp. 417–424).Google Scholar
  23. Malinowski, E., & Zimányi, E. (2004). Representing spatiality in a conceptual multi- dimensional model. In ACM-GIS.Google Scholar
  24. Mamoulis, N., & Papadias, D. (2001). Multiway spatial joins. ACM Transactions on Database Systems, 26, 424–475.zbMATHCrossRefGoogle Scholar
  25. Marketos, G.D. (2009). Data warehousing and mining techniques for moving object databases. In PhD. Thesis, University of Piraeus.Google Scholar
  26. Marketos, G., Frentzos, E., Giatrakos, N., Ntoutsi, I., Pelekis, N., Raffaeta, A., Theodoridis, Y. (2008). A framework for trajectory data warehousing. In HDMS.Google Scholar
  27. Masciari, E. (2011a). Efficient and effective query answering for trajectory cuboids. In FQAS (pp. 270–281).Google Scholar
  28. Masciari, E. (2011b). Query answering on trajectory cuboids using prime numbers encodings. In IDEAS (pp. 214–218).Google Scholar
  29. Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T. (2006). Hermes—a framework for location-based data management. In EDBT.Google Scholar
  30. Pfoser, D., Jensen, C.S., Theodoridis, Y. (2000). Novel approaches in query processing for moving object trajectories. In Proc. of the 26th international conference on very large data bases, VLDB ’00 (pp. 395–406). San Francisco: Morgan Kaufmann Publishers Inc.Google Scholar
  31. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S. (2004). Managing uncertainty in moving objects databases. ACM Transactions on Database Systems, 29(3), 463–507.CrossRefGoogle Scholar
  32. Vaisman, A., & Zimanyi, E. (2009). What is spatio-temporal data warehousing? In Proceedings of the 11th international conference on data warehousing and knowledge discovery, DaWaK ’09 (pp. 9–23). Berlin: Springer.Google Scholar
  33. Vlachos, M., Kollios, G., Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In ICDE (pp. 673–684).Google Scholar
  34. Yang, J., & Hu, M. (2006). Trajpattern: mining sequential patterns from imprecise trajectories of mobile objects. In EDBT—extending database technology (pp. 664–681).Google Scholar
  35. Zhao, H., Yuen, P.C., Kwok, J.T. (2006). A novel incremental principal component analysis and its application for face recognition. IEEE Transaction on Systems, Man, and Cybernetics, 36, 873–886.CrossRefGoogle Scholar
  36. Zheng, Y., Li, Q., Chen, Y., Xie, X. (2008). Understanding mobility based on gps data. In UbiComp (pp. 312–321).Google Scholar
  37. Zheng, Y., Zhang, L., Xie, X., Ma, W. (2009). Mining interesting locations and travel sequences from gps trajectories. In World Wide Web (pp. 791–800).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ICAR-CNRRendeItaly

Personalised recommendations